
Advanced Concepts in Deep Learning

Plan for Day 1

• Foundations of deep learning

• Emerging architectures: Transformers, Graph Networks,
and more

• Deep reinforcement learning + case study: AlphaGo (if time
permits)

• Case study: AlphaFold (if time permits)

• Group discussion: Design deep learning approaches for
your problems.

The archetype

What is deep learning?

Flexible function approximation
capable of fitting complex functions

Computable gradient
function largely smooth

What can it do

How to train it

Flexibility

• Universal representation theorem:

Any continuous function in finite dimensions can be approximated arbitrarily
well with a two-layer neural network with finite number of hidden unit

Universal Approximation Bounds for Superpositions of a Sigmoidal Function

Flexibility

• Depth efficiency hypothesis
(widely held belief + proof for certain models):

Some functions expressed in multi-layer models requires super-
polynomial sized units to express in shallow models

Flexibility

• Flexible model does not generalize?

Rademacher complexity-based generalization bound

with probability at least 1- δ

Fun fact: neural network usually has the capacity to memorize random
labels perfectly

Test Error Training Error

Flexibility

• Flexible model does not generalize?

In practice, models are never trained to obtain the minimal training loss

High complexity

Low complexity

Initialization

Training on random data

Training on real data

Notion of generalization based on the ‘length’ of training path?

Gradient

• Implicit assumption is that deep learning models
can be learned by simply gradient descent

It will be interesting to understand when this assumption fails
(e.g., prime factorization)

Computation of Gradient: Automatic differentiation

• The basics:

• Computational graph:

Allow trivial solution to complex models /
changing model structure dynamically (data-dependent)

Computation of Gradient: Automatic differentiation

• The basics:
• Two modes: forward mode and backward mode

(optimal traversal path for arbitrary computational graph is NP-complete)

• Further improvement:
• Compiler for mathematical expressions that achieves acceleration and

numeric stability

• Mixing programing language with computational graph (conditionals,
loops, etc with mathematical functions)

• Higher-order derivative (e.g. Hessian)

Allow trivial solution to complex models /
changing model structure dynamically (data-dependent)

Computation of Gradient: Automatic differentiation

We only need stochastic gradient, so why not randomized automatic differentiation?

Randomized Automatic Di!erentiation, Deniz Oktay, Nick McGreivy, Joshua Aduol, Alex Beatson, Ryan P. Adams

Unbiased estimator of gradient
True gradient is sum of gradient through each computational paths, so subsampling the path leads to unbiased estimator

Sparse implementation similar to dropout in backward pass

https://arxiv.org/search/cs?searchtype=author&query=Oktay%2C+D
https://arxiv.org/search/cs?searchtype=author&query=McGreivy%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Aduol%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Beatson%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Adams%2C+R+P

Use gradient efficiently: Stochastic gradient descent

error rate (stochastic) vs 1/t error rate (batch)

‘High optimization error’ is tolerable:

No need to optimize beyond the statistical limit

Is SGD adaptive to the data uncertainty?

Connection between Stochastic Gradient Descent
and Bayesian inference

SGD as MCMC Stochastic gradient Langevin dynamics, Welling and Teh, 2011

SGD MCMC by Langevin dynamics

MCMC by Stochastic gradient Langevin dynamics

Connection between Stochastic Gradient Descent
and Bayesian inference

SGD as VI Stochastic Gradient Descent as Approximate Bayesian Inference, Mandt, 2017

SGD should not be considered simply as approximate gradient descent

SGD is then equivalent to stochastic process

which converge to Gaussian stationary distribution with covariance

Optimal learning rate

S is mini-batch size

Optimal preconditioning matrix

Find the center of the posterior:
Stochastic weight averaging

SWA can be seen as a particular type of learning rate decay 1-N/N_max

Optimization: scale invariance
Naive gradient descent is not scale-invariant

(Image credit: Alec Radford)

Known solution: use curvature of the surface (second order methods)

The exact way: compute Hessian matrix (second order derivatives) / Newton’s method

The cheap way : approximation using the history of gradients

Optimization: variance reduction and scale invariance

RMSprop

SGD+momentum g_t = 0.9* g_{t-1} + 0.1 * g

Adam

http://sebastianruder.com/optimizing-gradient-descent/

Learning representations

Raw data that lives in some arbitrary (high-dimensional) space

Representation space with
smooth and linear structure

embedding

Representation: smoothness

Embedding learned by
variational autoencoder (VAE)

Embedding learned by
generative adversarial networks (GAN)

Bedroom (LSUN)Digits (MNIST)

Representation: smoothness

GAN github.com/kaonashi-tyc/zi2zi

RNN autoencoder https://arxiv.org/abs/1704.03477

https://arxiv.org/abs/1704.03477

Representation: linearity

Pretrained word vectors for >70 languages are publicly available

Representation: linearity

Representation learning

Trained on 82 million Amazon reviews to
predict the next character

“Sentiment neuron”

method: multiplicative LSTM

Reference: https://blog.openai.com/unsupervised-sentiment-neuron/

Part 2. Emerging deep learning
architectures

Transformers: State-of-the-art architecture for NLP (and beyond)

PaLM: Scaling Language Modeling with Pathways

Transformers -attention is all you need?

Multihead dot product attention

Ashish Vaswani, et al. “Attention is all you need.” NIPS 2017.

All-to-all interactions
Small parameter space invariant with length

(computation scales with length ^2)

Encoder-Decoder transformer architecture

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

At least you also need positional encoding!

Ashish Vaswani, et al. “Attention is all you need.” NIPS 2017.https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html#longer-attention-span-transformer-xl

or, learned positional encoding (absolute or relative)

Pre-specified positional encoding / embedding: the original transformer

Important: this assumes input length << 10000
Increase the number your input is long (len^2)

Note that this ensures a large number of dimensions have near constant positional embedding

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

What does learned positional embedding learn?

What Do Position Embeddings Learn? An Empirical Study of Pre-Trained Language Model Positional Encoding

Predict position from
embedding with
Linear regression

Predict the order of
two positions with

Logistic regression

BERT is
trained on
length-128

sentences in
the first stage
and extend to

512 in the
second stage

Hypothesis: Bidirectional language models (BERT/RoBERTa) are less good at learning positions compared to autoregressive language model (GPT2)
(both with unsupervised training / language modeling task)

Relative positional embedding - better ways to encode position?

• Transformer XL

Motivation: Mimicking absolution positional embedding without absolution positional embedding

Q’ K’ Q’ R’ u K’ v R’

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Self-Attention with Relative Position Representations

Q’ K’ Q’ R’

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Q’ K’ R’

Rotary Positional Embedding (RoPE)

Inner product of input with positional embedding
should only be sensitive to the relative distance m-n

RoFormer: Enhanced Transformer with Rotary Position Embedding

rotary embeddings must be applied at every layer (every Q and K), but computational cost is negligible compared to transformer

Rotation matrix

Requires even number of dimensions (can be interpreted as real and imaginary parts of a complex number that is rotated)

Can rotary positional embedding be combined with complex-valued neural networks (complex transformer?)

Rotary Positional Embedding (RoPE)

Inner product of input with positional embedding
should only be sensitive to the relative distance m-n

RoFormer: Enhanced Transformer with Rotary Position Embedding

rotary embeddings must be applied at every layer (every Q and K), but computational cost is negligible compared to transformer

Rotation matrix

Requires even number of dimensions (can be interpreted as real and imaginary parts of a complex number that is rotated)

Can rotary positional embedding be combined with complex-valued neural networks (complex transformer?)

Vision transformer for image recognition

Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

https://paperswithcode.com/author/alexey-dosovitskiy

Swin transformer: improving ViT

Hierarchical structure

Shifted non-overlapping windows
(Swin means shifted windows)

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Scalable transformer for long sequences
Sparse factorized attention

Generating Long Sequences with Sparse Transformers

Longformer: The Long-Document Transformer

Scalable transformer for long sequences
Sparse factorized attention

Generating Long Sequences with Sparse Transformers

Longformer: The Long-Document Transformer

Scalable transformer for long sequences
Restrict attention to be within buckets (or within nearby buckets)

Nikita Kitaev, et al. “Reformer: The Efficient Transformer” ICLR 2020.

Reformer (LSH) Routing transformer (k-means) Sinkhorn transformer (Sinkhorn Sorting)

Sorting (learned-ordering) as matrix multiplication

Sinkhorn-knopp algorithm output a sorting
matrix-like matrix via differentiable iterations

Blocks are still predefined, algorithm is
still n^2 wrt number of blocks and only

determines neighbor of the blocks

E!cient Content-Based Sparse Attention with Routing Transformers
Sparse Sinkhorn Attention

https://arxiv.org/abs/2001.04451
https://arxiv.org/pdf/2002.11296

Scalable transformer for long sequences
Low-rank approximation of attention (FAVOR+)

Rethinking Attention with Performers

Kernel
Feature map decomposition (can need infinite-dimensions though)

Most kernels can be approximated with random feature maps where w is random variable

FAVOR+: Use Nonlinear, random orthogonal feature maps to replace full attention
f W

Scalable transformer for long sequences
Low-rank approximation of attention (FAVOR+)

Rethinking Attention with Performers

No free lunch?: this approximation can be inefficient in high dimensions (r required >> L)
Despite so, this attention-free formulation can be an alternative to transformer (with learnable instead of random w)

Proof:

Exp can be replaced with ReLU for better performance in practice

Summary of existing “efficient” transformers

Efficient Transformers: A Survey

A Hopfield-network interpretation of
transformer

https://ml-jku.github.io/hopfield-layers/

Classical Hopfield network:
Store and retrieval of binary patterns

Discrete modern Hopfield network:

Continuous Hopfield network:

Fixed-point
update

update

update

Query Key Value

A Hopfield-network interpretation of
transformer

Motivating multi-step update
(better convergence to fixed point)No internal parameters (similar pattern retrieval)

Stored patterns (key) and projection (value) are parameters

Query and projection are parameters

From transformer to graph network

https://ai.googleblog.com/2020/10/rethinking-attention-with-performers.html

Graph Neural Network

Graph-structured data

https://graphdeeplearning.github.io/project/spatial-convnets/

• Graph is an extremely flexible abstraction for both data and models

https://arxiv.org/pdf/2003.00982.pdf
Benchmarking Graph Neural Networks

A general form of Graph Network (node-centric)

https://arxiv.org/pdf/2003.00982.pdf

A general form of Graph Network (node-centric)

Expressiveness of Graph networks:
The Weisfeiler-Lehman Isomorphism Test

If a mapping that preserves node adjacency exists,
two graphs are isomorphic

Expressiveness of Graph networks:
The Weisfeiler-Lehman Isomorphism Test

If a mapping that preserves node adjacency exists,
two graphs are isomorphic

https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

Is my GNN as powerful as WL test?
HOW POWERFUL ARE GRAPH NEURAL NETWORKS?

https://arxiv.org/pdf/1810.00826.pdf

Sum is more expressive than mean…than max

1-WL
GNN

Toward a general form of Graph Network

Relational inductive biases, deep learning, and graph networks

https://arxiv.org/pdf/1806.01261.pdf

Learning to Simulate Complex Physics with Graph Networks

Convolution + Pooling is a general technique for enforcing
invariance in representations

Group Equivariant Convolutional NetworksCohen and Welling, 2016

Can be extended to introduce translation, rotation, or scaling invariance etc.

Computational challenge: how to compute efficiently?

Mathematical perspective: invariant transformations as symmetry groups

Possible transformations grow multiplicatively if we stack invariances

Stochastic approximation (one random transformation at a time)?

Mallat, 2012 Group Invariant Scattering

SE(3) equivariant transformer

Fuchs et al., 2020

equivariant vs invariant

You can find the NeurIPS 2020 tutorial on equivariant networks

Design graph network for spatial
coordinates

 equivariant-GNNs

ϕ MLP

