
Advanced Concepts in Deep Learning 



Plan for Day 1

• Foundations of deep learning

• Emerging architectures: Transformers, Graph Networks, 
and more 

• Deep reinforcement learning + case study: AlphaGo (if time 
permits) 

• Case study: AlphaFold (if time permits) 

• Group discussion: Design deep learning approaches for 
your problems.



The archetype



What is deep learning?

Flexible function approximation 
capable of fitting complex functions

Computable gradient  
function largely smooth

What can it do

How to train it



Flexibility

• Universal representation theorem: 

Any continuous function in finite dimensions can be approximated arbitrarily 
well with a two-layer neural network with finite number of hidden unit 

Universal Approximation Bounds for Superpositions of a Sigmoidal Function



Flexibility

• Depth efficiency hypothesis  
(widely held belief + proof for certain models):  

Some functions expressed in multi-layer models requires super-
polynomial sized units to express in shallow models



Flexibility

• Flexible model does not generalize?

Rademacher complexity-based generalization bound

with probability at least 1-  δ

Fun fact: neural network usually has the capacity to memorize random 
labels perfectly 

Test Error Training Error



Flexibility

• Flexible model does not generalize?

In practice, models are never trained to obtain the minimal training loss

High complexity

Low complexity

Initialization

Training on random data

Training on real data

Notion of generalization based on the ‘length’ of training path?



Gradient

• Implicit assumption is that deep learning models 
can be learned by simply gradient descent

It will be interesting to understand when this assumption fails  
(e.g., prime factorization) 



Computation of Gradient: Automatic differentiation 

• The basics: 

• Computational graph:

Allow trivial solution to complex models /  
changing model structure dynamically (data-dependent)



Computation of Gradient: Automatic differentiation 

• The basics: 
• Two modes: forward mode and backward mode 

(optimal traversal path for arbitrary computational graph is NP-complete) 

• Further improvement: 
• Compiler for mathematical expressions that achieves acceleration and 

numeric stability 

• Mixing programing language with computational graph (conditionals, 
loops, etc with mathematical functions) 

• Higher-order derivative (e.g. Hessian)

Allow trivial solution to complex models /  
changing model structure dynamically (data-dependent)



Computation of Gradient: Automatic differentiation 

We only need stochastic gradient, so why not randomized automatic differentiation?

Randomized Automatic Di!erentiation, Deniz Oktay, Nick McGreivy, Joshua Aduol, Alex Beatson, Ryan P. Adams

Unbiased estimator of gradient
True gradient is sum of gradient through each computational paths, so subsampling the path leads to unbiased estimator

Sparse implementation similar to dropout in backward pass 

https://arxiv.org/search/cs?searchtype=author&query=Oktay%2C+D
https://arxiv.org/search/cs?searchtype=author&query=McGreivy%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Aduol%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Beatson%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Adams%2C+R+P


Use gradient efficiently: Stochastic gradient descent

error rate (stochastic) vs 1/t error rate (batch)

‘High optimization error’ is tolerable:  

No need to optimize beyond the statistical limit

Is SGD adaptive to the data uncertainty?



Connection between Stochastic Gradient Descent 
and Bayesian inference

SGD as MCMC Stochastic gradient Langevin dynamics, Welling and Teh, 2011

SGD MCMC by Langevin dynamics

MCMC by Stochastic gradient Langevin dynamics



Connection between Stochastic Gradient Descent 
and Bayesian inference

SGD as VI Stochastic Gradient Descent as Approximate Bayesian Inference, Mandt, 2017

SGD should not be considered simply as approximate gradient descent

SGD is then equivalent to stochastic process

which converge to Gaussian stationary distribution with covariance

Optimal learning rate

S is mini-batch size

Optimal preconditioning matrix



Find the center of the posterior:  
Stochastic weight averaging

SWA can be seen as a particular type of learning rate decay  1-N/N_max



Optimization: scale invariance
Naive gradient descent is not scale-invariant

(Image credit: Alec Radford)

Known solution: use curvature of the surface (second order methods) 

The exact way: compute Hessian matrix (second order derivatives) / Newton’s method 

The cheap way : approximation using the history of gradients



Optimization: variance reduction and scale invariance

RMSprop

SGD+momentum g_t = 0.9* g_{t-1} + 0.1 * g

Adam

http://sebastianruder.com/optimizing-gradient-descent/



Learning representations

Raw data that lives in some arbitrary (high-dimensional) space

Representation space with  
smooth and linear structure

embedding



Representation: smoothness

Embedding learned by 
variational autoencoder (VAE)

Embedding learned by 
generative adversarial networks (GAN)

Bedroom (LSUN)Digits (MNIST)



Representation: smoothness

GAN github.com/kaonashi-tyc/zi2zi

RNN autoencoder https://arxiv.org/abs/1704.03477

https://arxiv.org/abs/1704.03477


Representation: linearity

Pretrained word vectors for >70 languages are publicly available 



Representation: linearity



Representation learning

Trained on 82 million Amazon reviews to 
predict the next character 

“Sentiment neuron”

method: multiplicative LSTM

Reference: https://blog.openai.com/unsupervised-sentiment-neuron/



Part 2. Emerging deep learning 
architectures



Transformers: State-of-the-art architecture for NLP (and beyond)

PaLM: Scaling Language Modeling with Pathways



Transformers -attention is all you need?

Multihead dot product attention

Ashish Vaswani, et al. “Attention is all you need.” NIPS 2017.

All-to-all interactions 
Small parameter space invariant with length 

(computation scales with length ^2)

Encoder-Decoder transformer architecture

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


At least you also need positional encoding!

Ashish Vaswani, et al. “Attention is all you need.” NIPS 2017.https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html#longer-attention-span-transformer-xl

or, learned positional encoding (absolute or relative)

Pre-specified positional encoding / embedding: the original transformer

Important: this assumes input length  << 10000
Increase the number your input is long (len^2)

Note that this ensures a large number of dimensions have near constant positional embedding

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


What does learned positional embedding learn?

What Do Position Embeddings Learn? An Empirical Study of Pre-Trained Language Model Positional Encoding

Predict position from 
embedding with 
Linear regression

Predict the order of 
two positions with 

Logistic regression

BERT is 
trained on 
length-128 

sentences in 
the first stage 
and extend to 

512 in the 
second stage

Hypothesis: Bidirectional language models (BERT/RoBERTa)  are less good at learning positions compared to autoregressive language model (GPT2)  
(both with unsupervised training / language modeling task)



Relative positional embedding - better ways to encode position?

• Transformer XL

Motivation: Mimicking absolution positional embedding without absolution positional embedding

Q’ K’ Q’ R’ u K’ v R’

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Self-Attention with Relative Position Representations

Q’ K’ Q’ R’

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Q’ K’ R’



Rotary Positional Embedding (RoPE)

Inner product of input with positional embedding  
should only be sensitive to the relative distance m-n

RoFormer: Enhanced Transformer with Rotary Position Embedding

rotary embeddings must be applied at every layer (every Q and K), but computational cost is negligible compared to transformer

Rotation matrix

Requires even number of dimensions (can be interpreted as real and imaginary parts of a complex number that is rotated)

Can rotary positional embedding be combined with complex-valued neural networks (complex transformer?)
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RoFormer: Enhanced Transformer with Rotary Position Embedding

rotary embeddings must be applied at every layer (every Q and K), but computational cost is negligible compared to transformer

Rotation matrix

Requires even number of dimensions (can be interpreted as real and imaginary parts of a complex number that is rotated)

Can rotary positional embedding be combined with complex-valued neural networks (complex transformer?)



Vision transformer for image recognition

Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

https://paperswithcode.com/author/alexey-dosovitskiy


Swin transformer: improving ViT 

Hierarchical structure

Shifted non-overlapping windows 
(Swin means shifted windows)

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows



Scalable transformer for long sequences
Sparse factorized attention

Generating Long Sequences with Sparse Transformers

Longformer: The Long-Document Transformer



Scalable transformer for long sequences
Sparse factorized attention

Generating Long Sequences with Sparse Transformers

Longformer: The Long-Document Transformer



Scalable transformer for long sequences
Restrict attention to be within buckets (or within nearby buckets)

Nikita Kitaev, et al. “Reformer: The Efficient Transformer” ICLR 2020.

Reformer (LSH) Routing transformer (k-means) Sinkhorn transformer (Sinkhorn Sorting)

Sorting (learned-ordering) as matrix multiplication

Sinkhorn-knopp algorithm output a sorting 
matrix-like matrix via differentiable iterations 

Blocks are still predefined, algorithm is 
still n^2 wrt number of blocks and only 

determines neighbor of the blocks

E!cient Content-Based Sparse Attention with Routing Transformers
Sparse Sinkhorn Attention

https://arxiv.org/abs/2001.04451
https://arxiv.org/pdf/2002.11296


Scalable transformer for long sequences
Low-rank approximation of attention (FAVOR+)

Rethinking Attention with Performers

Kernel
Feature map decomposition (can need infinite-dimensions though)

Most kernels can be approximated with random feature maps where w is random variable

FAVOR+: Use Nonlinear, random orthogonal feature maps to replace full attention
f W



Scalable transformer for long sequences
Low-rank approximation of attention (FAVOR+)

Rethinking Attention with Performers

No free lunch?:  this approximation can be inefficient in high dimensions (r required >> L) 
Despite so, this attention-free formulation can be an alternative to transformer (with learnable instead of random w)

Proof:

Exp can be replaced with ReLU for better performance in practice



Summary of existing “efficient” transformers

Efficient Transformers: A Survey



A Hopfield-network interpretation of 
transformer 

https://ml-jku.github.io/hopfield-layers/

Classical Hopfield network: 
Store and retrieval of binary patterns

Discrete modern Hopfield network:

Continuous Hopfield network:

Fixed-point 
update

update

update

Query Key Value



A Hopfield-network interpretation of 
transformer 

Motivating multi-step update 
(better convergence to fixed point)No internal parameters (similar pattern retrieval)

Stored patterns (key) and projection (value) are parameters

Query and projection are parameters



From transformer to graph network

https://ai.googleblog.com/2020/10/rethinking-attention-with-performers.html



Graph Neural Network

Graph-structured data

https://graphdeeplearning.github.io/project/spatial-convnets/

• Graph is an extremely flexible abstraction for both data and models 



https://arxiv.org/pdf/2003.00982.pdf
Benchmarking Graph Neural Networks

A general form of Graph Network (node-centric)



https://arxiv.org/pdf/2003.00982.pdf

A general form of Graph Network (node-centric)



Expressiveness of Graph networks: 
The Weisfeiler-Lehman Isomorphism Test

If a mapping that preserves node adjacency exists, 
two graphs are isomorphic



Expressiveness of Graph networks: 
The Weisfeiler-Lehman Isomorphism Test

If a mapping that preserves node adjacency exists, 
two graphs are isomorphic

https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

Is my GNN as powerful as WL test?
HOW POWERFUL ARE GRAPH NEURAL NETWORKS?

https://arxiv.org/pdf/1810.00826.pdf



Sum is more expressive than mean…than max

1-WL  
GNN



Toward a general form of Graph Network

Relational inductive biases, deep learning, and graph networks

https://arxiv.org/pdf/1806.01261.pdf



Learning to Simulate Complex Physics with Graph Networks



Convolution + Pooling is a general technique for enforcing 
invariance in representations

Group Equivariant Convolutional NetworksCohen and Welling, 2016

Can be extended to introduce translation, rotation, or scaling invariance etc.

Computational challenge: how to compute efficiently?

Mathematical perspective: invariant transformations as symmetry groups

Possible transformations grow multiplicatively if we stack invariances

Stochastic approximation (one random transformation at a time)?

Mallat, 2012 Group Invariant Scattering 



SE(3) equivariant transformer

Fuchs et al., 2020

equivariant vs invariant

You can find the NeurIPS 2020 tutorial on equivariant networks



Design graph network for spatial 
coordinates 

 equivariant-GNNs

ϕ MLP


