Advanced Concepts in Deep Learning



Plan for Day 1

Foundations of deep learning

Emerging architectures: Transformers, Graph Networks,
and more

Deep reinforcement learning + case study: AlphaGo (if time
permits)

Case study: AlphaFold (if time permits)

Group discussion: Design deep learning approaches for
your problems.



The archetype

layer 1 layer 2 layer 3

3
Way

wf;, is the weight from the & neuron

in the (I —1)*" layer to the j*" neuron
in the [*" layer




What is deep learning?

What can it do Flexible function approximation
capable of fitting complex functions

How to train it Computable gradient
function smooth



Flexibility

 Universal representation theorem:

Any continuous function in finite dimensions can be approximated arbitrarily
well with a two-layer neural network with finite number of hidden unit

output

Universal Approximation Bounds for Superpositions of a Sigmoidal Function



Flexibility

* Depth efficiency hypothesis

(widely held belief + proof for certain models):

Some functions expressed in multi-layer models requires super-
polynomial sized units to express in shallow models

output



Flexibility

* Flexible model does not generalize”

Rademacher complexity-based

Test Error Training Error

Bm(F) = [p( Zazf )] Eplf(2)] < Es[f<z>]+2Rm<f>+\/

i

In (1/6)

m

with probability at least 1-

Fun fact: neural network usually has the capacity to memorize random
labels pertectly



Flexibility

* Flexible model does not generalize”

In practice, models are never trained to obtain the minimal training loss

High complexity

Low complexity

" Training on random data

Training onfeal data

Notion of generalization based on the ‘length’ of training path?



GGradient

* Implicit assumption Is that deep learning models
can be learned by simply gradient descent

It will be interesting to understand when this assumption fails
(e.g., prime factorization)



Computation of Gradient: Automatic differentiation

Allow trivial solution to complex models /
changing model structure dynamically (data-dependent)

e The basics: dy _ dy do
T
e K,

» Computational graph: <o
e
(axpooizd )

ssssss



e [he basics:

Computation of Gradient: Automatic differentiation

Allow trivial solution to complex models /
changing model structure dynamically (data-dependent)

dy _ dy dw
dr dw dz

e Two modes: forward mode and backward mode

(optimal traversal path for arbitrary computational graph is NP-complete)

e Further improvement:

Compiler for mathematical expressions that achieves acceleration and
numeric stability

Mixing programing language with computational graph (conditionals,
loops, etc with mathematical functions)

Higher-order derivative (e.g. Hessian)



Computation of Gradient: Automatic differentiation

We only need stochastic gradient, so why not randomized automatic differentiation?

Unbiased estimator of gradient

True gradient is sum of gradient through each computational paths, so subsampling the path leads to unbiased estimator

oy /@\.
from math import sin, exp \.

A h A

def f(x1, x2): C#/
a = exp(xl) exp (x1) @b « X2 /é)

b = sin(x2) ! ! 1
C = b % x2 sin(x2) exp (x1) b

d=a=xc :‘M(xz,
return a * d -

(a) Differentiable Python function (b) Primal graph (c) Linearized graph (d) Bauer paths

Sparse implementation similar to dropout in backward pass

Randomized Automatic Differentiation, Deniz Oktay, Nick McGreivy, Joshua Aduol, Alex Beatson, Ryan P. Adams



https://arxiv.org/search/cs?searchtype=author&query=Oktay%2C+D
https://arxiv.org/search/cs?searchtype=author&query=McGreivy%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Aduol%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Beatson%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Adams%2C+R+P

Use gradient efficiently: Stochastic gradient descent

1/V/t error rate ( ) vs 1/t error rate (batch)

‘High optimization error’ is tolerable:

No need to optimize beyond the statistical limit

s SGD adaptive to the data uncertainty?



Connection between Stochastic Gradient Descent
and Bayesian inference

SGD as MCMC Stochastic gradient Langevin dynamics, Welling and Teh, 2011
SGD MCMC by Langevin dynamics
n N
AG, = 5 (v log p(6) + % v 1ogp(xm-|9t)) AG = 5 (V logp(6:) + )V 10gp(xil9t)) +m
=1 =1

MCMC by Stochastic gradient Langevin dynamics ne ~ N(0,€) (3)

N n
Ab, = % (V logp(6;) + p ; Vlogp(:cm-|9t)> +

ne ~ N(Oa et) (4)



Connection between Stochastic Gradient Descent
and Bayesian inference

SGD as VI Stochastic Gradient Descent as Approximate Bayesian Inference, Mandt, 2017
gs(0) ~ g(0) + 75Ag(0), Ag(6) ~N(0,C(6)) C(6) ~C = BB

S is mini-batch size

SGD is then equivalent to stochastic process d@(t) = —eg(e)dt T ﬁB dW(t)

which converge to Gaussian stationary distribution with covariance

—0.16 —0.16
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SGD should not be considered simply as approximate gradient descent



Find the center of the posterior:
Stochastic weight averaging

Train loss

>0.8832
‘ 0.8832
0.4391

0.2206
- 01131

0.06024

o ¢ - - - - - - = - 0.03422
I 0.02142
: - - : : 0.00903

SWA can be seen as a particular type of learning rate decay 1-N/N_max



Optimization: scale invariance

Naive gradient descent is not scale-invariant

Known solution: use curvature of the surface (second order methods)

The exact way: compute Hessian matrix (second order derivatives) / Newton’s method

- _ [ -1 g/
The cheap way : approximation using the history of gradients zerr = @ — [ (@x)]7 f (k)

- SGD

-  Momentum
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(Image credit: Alec Radford)



Optimization: variance reduction and scale invariance

SGD+momentum g.t=09%g {t-1]+0.1*g
7
RMSpro 6,1 =0, — 2.
PIop \/E[g2]t + €
Adam m; = fime1 + (1 — B1)g:. -
O1 = 0 — m.

vi = Pavicr + (1 = Bo)g?. Vite

http://sebastianruder.com/optimizing-gradient-descent/



Learning representations

Raw data that lives in some arbitrary (high-dimensional) space

embedding

Representation space with
smooth and linear structure



sSmMoothness

Representation

Bedroom (LSUN)

Digits (MNIST)
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Embedding learned by
generative adversarial networks (GAN)

Embedding learned by
variational autoencoder (VAE)



Representation: smoothness

Human Input Human Input

RNN autoencoder https://arxiv.org/abs/1704.03477
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GAN  github.com/kaonashi-tyc/zi2zi


https://arxiv.org/abs/1704.03477

king

Representation: linearity

A

man
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Male-Female
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walking

Pretrained word vectors for >70 languages are publicly available

A
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Representation: linearity

smiling neutral neutral

smiling man
woman woman an g

man man woman

with glasses without glasses without glasses woman with glasses



Representation learning

This is one of Crichton's best

Seriously, the screenplay AND the directing were
horrendous and clearly done by people who could not fathom what was good about the
novel. I can't fault the actors because frankly a chance to make this

LUT KA

u

The movie is just dreadfi

“Sentiment neuron”

Trained on 82 million Amazon reviews to
predict the next character method: multiplicative LSTM

Reference: https://blog.openai.com/unsupervised-sentiment-neuron/



Part 2. Emerging deep learning
architectures



Transformers: State-of-the-art architecture for NLP (and beyond)

Explaining a Joke

//;;;ut Did you see that Google just hired an eloquent—\\\\

whale for their TPU team? It showed them how to
communicate between two different pods!

Model Output: TPUs are a type of computer chip that
Google uses for deep learning. A "pod" is a group of
TPUs. A "pod" is also a group of whales. The joke is
that the whale is able to communicate between two
groups of whales, but the speaker is pretending that
the whale is able to communicate between two groups of

2 /

Logical Inference

//;;;ut Shelley is from Virginia, but is visiting that city with\\\\
that famous market where they throw the fish. Going home next
Tuesday!

Question: Is it likely that Shelley will be near the Pacific
Ocean this weekend?

Model Output: The city with the famous market where they throw
the fish is Seattle, Washington. Seattle is on the Pacific
Ocean. Shelley is visiting Seattle, so she will be near the
Pacific Ocean this weekend. The answer is "yes", it is likely

\\iﬁft Shelley will be near the Pacific Ocean this weekend. 4////

PalLM: Scaling Language Modeling with Pathways



Transformers -attention is all you need?”

Multihead dot product attention

Computational
and Memory
Complexity

O(n?)

[ concatenate |

l

: )
Scaled Dot-Product Attention

1 |

[ 'VLinear ],f [ VVLVinear p [ ‘Linear }
Y 2 P

K \% Q

All-to-all interactions
Small parameter space invariant with length
(computation scales with length A2)

Encoder-Decoder transformer architecture
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Ashish Vaswani, et al. “Attention is all you need.” NIPS 2017.
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http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

At least you also need positional encoding!

Pre-specified positional encoding / embedding: the original transformer

. / . /
sm( : 26//d) if 6 =26 Important: this assumes input length << 10000
PE(i 5) = IOOOQ Increase the number your input is long (len?2)
’ cos(———) if6=28 +1
1000025/

0 20 4 100 120

w .
W
. ".::"Jlllljlillhh 1l

Note that this ensures a large number of dimensions have near constant positional embedding

Fig. 3. Sinusoidal positional encoding with L = 32 and d = 128. The value is
between -1 (black) and 1 (white) and the value 0 is in gray.

or, learned positional encoding (absolute or relative)

https://lilianweng.github.io/lil-log/2020/04/07 /the-transformer-family.html#longer-attention-span-transformer-x| Ashish Vaswani’ et al. “Attention is all vou need.” NIPS 2017.



http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

What does learned positional embedding learn?

BERT ___RoBERTa GPT2 sinusoid
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Figure 1: Visualization of position-wise cosine similarity of different position embeddings. Lighter in the figures
denotes the higher similarity.

Hypothesis: Bidirectional language models (BERT/RoBERTa) are less good at learning positions compared to autoregressive language model (GPT2)
(both with unsupervised training / language modeling task)

Type | PE MAE Type PE Error Rate
Learned g]ngRTa 3;1(1)3 Predict position from BERT 19.72% Predict the order of
=15 1'03 embedding with Learned | RoBERTa 7.23% two positions with
- : Linear regression GPT-2 1.56% Logistic regression
Pre-Defined | sinusoid 0.0 Pre-Defined | sinusoid 5.08%

Table 1: Mean absolute error of the reversed mapping

) ) i Table 2: Error rate of the relative position regression.
function learned by linear regression. P &

What Do Position Embeddings Learn? An Empirical Study of Pre-Trained Language Model Positional Encoding



Relative positional embedding - better ways to encode position?

° Transformer XL Transformer (Training) Transformer-XL (Training)
© © o ©o © © 0 0/0 O O O{0O O O 0,0 0 0 0
O 0 0 o O 0 0 0/0 O O 0:0 O O Oi0 0 0 0
©) (@) O O @) (@) O O ©) O O O é O O o O E O ) o O @)
5 o

© © © o © ©6 ©6 6/0 © 0 ©0:!0 O O Oi06 © ©
X1 X2 X3 Xy X5 X X7 X8 X1 X2 X3 Xy VX X6 X7 X /' X9 X10 X1 X2
v ~ J e ’ AN N J

Segment 1 Segment 2 Fixed (No Grad) New Segment

Motivation: Mimicking absolution positional embedding without absolution positional embedding

a;j = qk;" = (x; + pY)WI((x; + p)W*)"

= x; WIWF U + x; WIWF T p’ + p,W? WK R + p W4 WK T p’ « Replace p; with relative positional encoding r;_; € R%;
J J ! J ! J  Replace p,W? with two trainable parameters u (for content) and v (for location) in two
different terms;

Transformer-XL reparameterizes the above four terms as follows: o Split W¥ into two matrices, W% for content information and W for location information.
Q’ K’ Q’ R’ u K v F
el —  « WIWE ' xT WIWkK T T kT T kT T
aij = X,W WE Xj + sz WR r,'_j + qu Xj + VVVR ri—j
“ -~ v, “ -~ WV —— ——

content-based addressing  content-dependent positional bias  global content bias  global positional bias

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Q’ K! Q’ R!
;WO (x;WHE)T + 2,WQ(afs)T
€ij = 7
vV &z Self-Attention with Relative Position Representations
Q’ - K’ R!

Q

1
T5 l N l K,I\NT
ij —=(z; W @ )(xj” )" b . .. . . .
Vd Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer



Rotary Positional Embedding (RoPE)

Inner product of input with positional embedding
should only be sensitive to the relative distance m-n

. X'y V\m
ROPE(.’I}, m) = wemzs EEl) X2 D:
(RoPE(g;,m), RoPE(kj,n)) = (g;e™", k;je™) . X (X, X
— q]k]engenzs Position
— m—n)ie
- q]k]e( ) nnnnnnnn 11l [T LT --- CEE
Transformer [ [ ] -+« 21 2
— ROPE(qu],m - n) with O -+ CEE 3 —_— o o R =
RRRRRR P o e o O e s
Figure 1: Implementation of Rotary Position Embedding(RoPE).
cosmfy — sinmb, 0 0 0 0 90
. . sin m6, cos mb 0 0 0 0 q,
Rotation matrix R : o |«
0 0 sin m6, cos mb, 0 0 q;
cos — sin x x cos  — ysin :
0 0 0 0
RV e . = . . 0 cosmBgp—1  —sinmbyn_1 || 94
sinf cosf Y xsinf + ycos 0 v sinmbury  cosmOuns N gp

Requires even number of dimensions (can be interpreted as real and imaginary parts of a complex number that is rotated)
rotary embeddings must be applied at every layer (every Q and K), but computational cost is negligible compared to transformer

Can rotary positional embedding be combined with complex-valued neural networks (complex transformer?)

RoFormer: Enhanced Transformer with Rotary Position Embedding



Rotary Positional Embedding (RoPE)

Inner product of input with positional embedding
should only be sensitive to the relative distance m-n

. X', V\m
RoPE(z,m) = ze™* !X:llg) %
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Figure 1: Implementation of Rotary Position Embedding(RoPE).

90 ( cosmfBy ) —q1 ) [ sinmfp )
. . q1 cos mby q0 sin m6
Rotation matrix | | cosmoy | | -a | | sinmo
g3 |®| cosmb 92 sin mé,
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v = ! sinf cosf ] [ ) ] B L: sin 6 4 y cos 9] . 94-2 cos mBap-1 ~qd-1 SIn mBap2-1
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Requires even number of dimensions (can be interpreted as real and imaginary parts of a complex number that is rotated)
rotary embeddings must be applied at every layer (every Q and K), but computational cost is negligible compared to transformer

Can rotary positional embedding be combined with complex-valued neural networks (complex transformer?)

RoFormer: Enhanced Transformer with Rotary Position Embedding



Vision transformer for image recognition

Vision Transformer (ViT) Transformer Encoder

Class

Bird MLP
Ball < Head

Car

Transformer Encoder
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Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale


https://paperswithcode.com/author/alexey-dosovitskiy

Swin transformer:

segmentation

class1ﬁcat10n

/%4// Ao

zﬁ//éf// ~ax

detectlon

(a) Swin Transformer (ours)

Layer |

cla531ﬁcat10n

// =4

-

/%4/7@ o

/%

(b) iT

/ 16><

Layer I+1

A local window to
perform self-attention

A patch

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

improving Vil

Hierarchical structure

Shifted non-overlapping windows
(Swin means shifted windows)



Scalable transformer for long sequences

Sparse factorized attention

S, A® A A

connectivity
subsets

E 8 g
SE £ 2 £ |
25 3 3 3
? E

(e}

o s

=
Input indices Input indices Input indices
(a) Transformer (b) Sparse Transformer with (c) Sparse Transformer with
strided attention. fixed attention.
Generating Long Sequences with Sparse Transformers
EEE T
(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window

Longformer: The Long-Document Transformer



Scalable transformer for long sequences

Sparse factorized attention

S, A® A A

connectivity
subsets

E 8 g
SE £ 2 £ |
25 3 3 3
? E

(e}

o s

=
Input indices Input indices Input indices
(a) Transformer (b) Sparse Transformer with (c) Sparse Transformer with
strided attention. fixed attention.
Generating Long Sequences with Sparse Transformers
EEE T
(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window

Longformer: The Long-Document Transformer



Scalable transformer for long sequences

Restrict attention to be within buckets (or within nearby buckets)

Reformer (LSH)

g, 9, 9; 9, 95 9, q, 9, 9, d; 9 95 g, 9, 9, 95 9 Ys q, 9, 9, 93 9 qs

x X X X X X

o o NS NS

(a) Normal

Sequence
of queries=keys

LSH bucketing

Sort by LSH bucket ‘

Chunk sorted
sequence to
parallelize

Attend within

same bucket in
own chunk and
previous chunk

N

4
4,
Qs

(b) Bucketed (@Q=K (d) Chunked

3

x X X X X x
I of

5

HNEEEEEEEEEEEEEE
L= BE

I T e T

O T (e [ T

AEEN B (e T

Nikita Kitaev, et al. “Reformer: The Efficient Transformer” ICLR 2020.
Efficient Content-Based Sparse Attention with Routing Transformers
Sparse Sinkhorn Attention

Routing transformer (k-means)

(c) Routing attention

Sinkhorn transformer (Sinkhorn Sorting)

Sorting (learned-ordering) as matrix multiplication

Sinkhorn
Sorting

|
Il

Query

11

Sorted
Keys
Blocks

<@ e
-

I Input Sequence I

Keys
Blocks

Sinkhorn-knopp algorithm output a sorting
matrix-like matrix via differentiable iterations

Blocks are still predefined, algorithm is
still nA2 wrt number of blocks and only
determines neighbor of the blocks


https://arxiv.org/abs/2001.04451
https://arxiv.org/pdf/2002.11296

Scalable transformer for long sequences

Low-rank approximation of attention (FAVOR+)

_______________________________________________________

. O(L?d) C OLrd) T 3y

i | Y Otbrd) j— )

K immmn |

LxL ||| xdl[SiExe & rx L [J& ] gl

/ o x)' |

_____ A eV NQ VS
Kernel K(x,y) = E[p(x) 6(y)]-

Feature map decomposition (can need infinite-dimensions though)

Most kernels can be approximated with random feature maps where w is random variable

) = " P (]2, S 30) s T R, s i30)

f W
FAVOR+: Use Nonlinear, random orthogonal feature maps to replace full attention

Rethinking Attention with Performers



Scalable transformer for long sequences

Low-rank approximation of attention (FAVOR+)

_______________________________________________________

e 2 O(Trd) -7 "~ --Tmmsm s ‘\\
/ :§, | O(L d)| v ‘ |O(er) /O(Lrd) | \
: o'g? 1 7 : ' & | 1 i
: IR - i
: :I_Ii . E """" |
: L x L <O\?>L><dl:':’~ ng:.iTZXij S xd i
i L N | |
i / /i - (K)'
: b \ .
' - A attention mechanism V ,’/ \\\ Q, ' R y_,/ '/I
- eCE +e—$
T A = exp(_ =l coshz =
- = exp(— =51
SM(X7 Y) exp(w y) ) ) 2 7 —X + y :
SM(x,y) = E T _||X|| T _||Y|| — AE h(wT
Y ) = LwN(0,I)|€XP\W - X 9 eXp\w 'y 9 = ALy N(0,1,4) COS (w' z)
Proof:
SM(x,y) = exp(z "y) = exp(—||z[|*/2) - exp(||lz + y|*/2) - exp(—ly[*/2).
exp(|@ + y|?/2) = (2m) =%/ exp(||w+y||2/2)/exp(—llw— (z +9)l°/2)dw
= (27r)‘d/2/exp(—\|w\l2/2+ w' (z+y) - lle+yl*/2+ |2+ yl*/2)dw
— 21 [ exp(—[w]/2+ wT (@ + ))du
— 1) [ exp(—w?/2) - exp(w ) - explwTy)dw
— ]Ew~N(od,1d)[eXp(wT-’B) . exp(wTy)], Exp can be replaced with RelLU for better performance in practice

No free lunch?: this approximation can be inefficient in high dimensions (r required >> L)
Despite so, this attention-free formulation can be an alternative to transformer (with learnable instead of random w)

Rethinking Attention with Performers



Summary of existing “efficient” transformers

Transformer-XL
(Dai et al., 2019)

R

Compressive

Transformer
(Rae et al., 2018)

urrence

Performer

(Choromanski et al., 2020) Set Transformer

(Leeetal., 2019)

Low Rank / SR

. Memory
Linformer Compressed
(Wang et al., 2020b) Kern e I s (Liu eEaI., 2018)

Longformer Routing
ETC (Beltagy et al., 2020) Transformer
. - (Roy et al,, 2020)
Linear Synthe3|zer (Ainslie et al., 2020) i
(Tay et al., 2020a) . .
Transformer Big Bird

(Katharopoulos et al., 2020) (Zaheer et al., 2020)

Fixed/Factorized/ | & 1o
Random Patterns | Transformer

(Tay et al., 2020b)
Reformer

Blockwise Transformer (Kitaev et al,, 2020)

(Qiu et al., 2019)

Sparse Transformer

Image Transformer (ElEChe i)
(Parmar et al., 2018)

Axial Transformer
(Ho et al., 2019)

Efficient Transformers: A Survey



A Hopfield-network interpretation of
transformer

Classical Hopfield network:

Continuous Hopfield network:
Store and retrieval of binary patterns

E = —lse(ﬂ, XT§) + %§T§-

Fixed-point

update ET! = X.goftmax(ﬂXTEt)
update

.
.
0

",
10
A
0
L

Query Keil Vthe
Discrete modern Hopfield network: Z =wfmax (8 R Y' ) Y

N
E=-— z exp(x; )
i=1

4
B - softmax ( [TT11] I )- ( f-)‘_Y
*
update E [ = Sgn[ — E(§(I+)) + E(g(l—)) | s fankon

https://ml-jku.github.io/hopfield-layers/



A Hopfield-network interpretation of
transformer

Motivating multi-step update

No internal parameters (similar pattern retrieval) (better convergence to fixed point) T
Z  =softmax (ﬂ R YT ) Y = — MatMul
2 * A
1+
M - softmax (7 EIE @ ) B Y Softmax
R
f
L Mask
Stored patterns (key) and projection (value) are parameters a:
VA =softmax(ﬁ R W}; ) Wy 4 SCfle
Bl - oo (O ) % é MatMul
Query and projection are parameters
Z =s0ftmax( g Q W% YT z

Y WV 4+

)
_ Y




From transformer to graph network

N\

local attention graph attention
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https://ai.googleblog.com/2020/10/rethinking-attention-with-performers.html
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Graph Neural Network

Graph is an extremely flexible abstraction for both data and models

Graph-structured data

sssssss

Recommender
systems (Amazon,
Netflix)

Social networks
(Advertisement)
Words relationships
(NLP) . A
Bralf1 - 3:: 8 ;1-.".?'
: connectivity Sl .
Drug/Material (Neuroscience)
molecules Gene Regulatory
(Chemjstry) Network
Graphs/
Networks
e Neutrino
Transportation 2 oo s et detection (High-
networks Knowledge graph energy Physics)
(Causality)
https://graphdeeplearning.github.io/project/spatial-convnets/

3D Meshes
(Computer Graphics)



A general form of Graph Network (node-centric)

layer £ + 1
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Figure 5: A generic graph neural network layer. Figure adapted from [11].

Benchmarking Graph Neural Networks
https://arxiv.org/pdf/2003.00982. pdf



A general form of Graph Network (node-centric)

hlf-l-l T

layer £ + 1

Mean;
A

4
h {rt}

Figure 6: GCN Layer

Figure 8: GAT Layer

h{f+1
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Ut Figure 5: A generic graph neural network layer. Figure adapted from [11]. ReLU
T (2
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Figure 7: GraphSage Layer
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httpS//arXIVorg/pdf/ZOOS00982 pdf Figure 11: GIN Layer Figure 10: GatedGCN Layer Figure 9: MoNet Layer



Expressiveness of Graph networks:
The Weisfeiler-Lehman Isomorphism Test

It @ mapping that preserves node adjacency exists,
two graphs are isomorphic

Graph 2



Expressiveness of Graph networks:
The Weisfeiler-Lehman Isomorphism Test

It @ mapping that preserves node adjacency exists,
two graphs are isomorphic

i O L ® i &)
Graph 1 Graph 2 Graph 1 Graph 2 Graph 1 Graph 2
i &) L & ” ()

Graph 1 Graph 2 Graph 1 Graph 2 Graph 1 Graph 2

Is my GNN as powerful as WL test?

HOW POWERFUL ARE GRAPH NEURAL NETWORKS?

https://arxiv.org/pdf/1810.00826.pdf https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/



Sum Is more expressive than mean...than max

e o ¢ o - _ =
LA N -
Input sum - multiset mean - distribution max - set

RelLU

MLP

T ¢

sz. PanN Ivs../U\' ird [5m)]
v 9 @ o

(a) Mean and Max both fail (b) Max fails ,
Figure 11: GIN Layer

1-WL
GNN



Toward a general form of Graph Network

Edge block Node block Global block

(a) Edge update (b) Node update (c) Global update

Relational inductive biases, deep learning, and graph networks

https://arxiv.org/pdf/1806.01261.pdf



Learning to Simulate Complex Physics with Graph Networks

Sand

Time

Figure 1. Rollouts of our GNS model for our WATER-3D, GOOP-
3D and SAND-3D datasets. It learns to simulate rich materials at
resolutions sufficient for high-quality rendering [video].



Convolution + Pooling is a general technigue for enforcing
invariance in representations

Can be extended to introduce translation, rotation, or scaling invariance etc.

Mathematical perspective: invariant transformations as symmetry groups

Cohen and Welling, 2016 Group Equivariant Convolutional Networks

Mallat, 2012 Group Invariant Scattering

Computational challenge: how to compute efficiently?

Possible transformations grow multiplicatively if we stack invariances

Stochastic approximation (one random transformation at a time)?



SE(3) equivariant transformer

equivariant vs invariant

Y

p4(Q)

f, f,
Step 1: Get nearest neighbours and relative positions Step 2: Get SO(3)-equivariant weight matrices
/, ; \\ Clebsch- Radial Neural Spherical
! L x; \ Gordon Coeff. Network Harmonics
\
! \
1
Lk 125 z
| oy lell) ol
! Jm o |||
1 AN ~ J
1
\ ! Matrix W consists of blocks mapping between degrees
\\ y
\\ ’/l m
W) =W | 1Q7,, @F(llel); Yim | —
_______ - [ed] Jm,bk
Step 3: Propagate queries, keys, and values to edges Step 4: Compute attention and aggregate
vij = Wy (xj o xi) f; exp (qi—rkij)
kij = Wx (x; — x;) £ R
ij ( J 1) J ) Ej’ eXp(qi kij’)

= Wof;

N
X
oum - E Q;Vij
\
\

JEN:\i

You can find the NeurlPS 2020 tutorial on equivariant networks

Fuchs et al.,

2020



Design graph network for spatial
coordinates
equivariant-GNNs

E(n) Equivariant Graph Neural Networks

GNN

Radial Field

TEN

Schnet

EGNN

Lopl gl 2
m;; = ¢e(h;, hy, |lr; (|7, a;5)

Edge | mg; = ¢e(hl, bl a;5) | my; = d(llrl;IDrl; | my; = 3 Wb hlR | my; = ¢e(lIrk; () és(h)) .
mg;; = rijfbac(mz’j)
Agg’ m; = Zje./\/'(i) m; m; = Ej;éi m; ; m,; = Zj;éi m; ; m; = Zj;éi m; ; rri% iszN(’i) fnij
1+1 l 1+1 l 1+1 14,1 1+1 l hql;+1 = ¢n (hf;,mi)
Node h, = ¢p(h;, m;) X, =x; + m; h, =w " h; +m; h, = ¢p(h;, m;)

I+1 _ _1 A
x, = x; + m;

Non-equivariant

E(n)-Equivariant

SE(3)-Equivariant

E(n)-Invariant

E(n)-Equivariant

ri; = (Xi —X;)

¢ MLP




