
• Variational inference  
• MCMC (e.g. Hamiltonian Monte Carlo uses gradient to speed up sampling)

Similar to deep learning, inference method are often gradient based

http://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html

• Guide the design of deep learning models

Deep learning for probabilistic models

• Tractable inference for intractable distributions (unnormalized density)

Why

Posterior distribution

Energy-based models

Toward tractable inference for more expressive probabilistic models

• Complex generative tasks



Deep learning for probabilistic models

• Neural variational inference (variational autoencoder, diffusion probability model*) 
• Neural MCMC sampler

• Tractable inference for intractable distributions (unnormalized density)

Potential approaches for NN-assisted inference

Why

Posterior distribution

Energy-based models

Toward tractable inference for more expressive probabilistic models

• Design probability model with tractable & flexible distribution
• Neural autoregressive model  (e.g. transformer language model) 
• Normalizing flow 
• Neural ODE (continuous normalizing flow)

• Implicit probability model with sampling capability
• Generative adversarial network* 
• Diffusion probability models*
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Use neural network for describing P(X|Z)  or Q(Z|X)

Neural variational inference

Kingma and Welling, 2014 Auto-Encoding Variational Bayes



Z

X
N

θ

φ

Use neural network for describing P(X|Z)  or Q(Z|X)

Kingma and Welling, 2014 Auto-Encoding Variational Bayes

The variational objective

Neural variational inference



Backpropagation over stochastic units:
Reparametrization trick

How to compute good gradient estimate of 

Gradient of expectation -> expectation of stochastic gradient

Kingma , et al. 2014. Auto-Encoding Variational BayesWilliams, 1992  “REINFORCE” estimator



Backpropagation over stochastic units:
Reparametrization trick for discrete variables

Discrete variables can always be represented by binary vectors

The Gumbel trick for sampling from discrete distributions

Softmax function for approximating the max operation with a differentiable function 



Toward flexible and normalized density models

1.Fully factorized models

Probability function is fully factorized 
However, it has to commit to a certain order

Neural autoregressive models



Toward flexible and normalized density models

2. Invertible transformations (Flow models)

Hidden variables are equal in dimensionality.

f

x f(x)

Dinh 2015, NICE: NON-LINEAR 
INDEPENDENT COMPONENTS 
ESTIMATION

NICE Normalizing flow

Rezende 2016. Variational Inference with Normalizing Flows

determinant fixed determinant O(D) time determinant O(D) time

Invertible  
autoregressive flow

Kingma, 2017 Invertible autoregressive flow

Examples:



Toward flexible and normalized density models

2. Invertible transformations (Flow models)

Hidden variables are equal in dimensionality.

f

x f(x)

Chen 2018, Neural ODE

ODE

determinant fixed

More Examples:

Grathwohl 2019: FFJORD

Log likelihood

FFJORD:

Continuous change of variable formula 



Probabilistic inference for trajectories using SDE-BNN

Xu 2021, Infinitely Deep Bayesian Neural Networks 
with Stochastic Differential Equations

Drift function Diffusion function

Infinite dimensional ELBO

Prior drift function Variational approximate 
posterior drift function



Score-matching for partition function-free generative 
model fitting

Energy-based models

score := gradient of log probability wrt x

Minimize Fisher divergence

Equivalent to Hyvärinen (2005)

<=>

However, trace of Hessian is usually intractable / too slow
Denoised score-matchingSliced score-matching (random projection)

http://yang-song.github.io/blog/2021/score/



Sample from p(X) using its gradient: Langevin dynamics

Initialize x from arbitrary distribution

i.e. once we learned the score function, we can sample from p(X),  



Sample from p(X) using its gradient: Langevin dynamics

Initialize x from arbitrary distribution

i.e. once we learned the score function, we can sample from p(X),  

however…



Learning the score function with data + noise

What noise level? Use multiple!

Generative Modeling by Estimating Gradients of the Data Distribution

Annealed Langevin dynamics



Score-based generative modeling with stochastic 
differential equations (SDEs)

Multiple noise-levels -> infinite noise levels (SDE)

Converge to a  
static distribution 
(prior distribution)

Reverse SDE is equivalent to sampling!

Score-Based Generative Modeling through Stochastic Differential Equations.

https://arxiv.org/abs/2011.13456


Score-based generative modeling with stochastic 
differential equations (SDEs)

Score-Based Generative Modeling through Stochastic Differential Equations.

https://arxiv.org/abs/2011.13456


Score-based generative modeling with stochastic 
differential equations (SDEs)

Score-Based Generative Modeling through Stochastic Differential Equations.

Learning the score function with infinite noise levels (SDE)

score-matching

SDE score-matching

https://arxiv.org/abs/2011.13456


Score-based generative modeling with stochastic 
differential equations (SDEs)

Score-Based Generative Modeling through Stochastic Differential Equations.

Sampling from reverse SDE

Convert learned SDE to and ODE with the same distribution 
(probability flow ODE): allows computing likelihood!

https://arxiv.org/abs/2011.13456


Score-matching for solving inverse problems

Given P(Y |X) P(X |Y )Solve 

Inverse problems are typically a family of problems, which is easy to compute in one 
direction, but hard to compute in the reversed direction

Image colorization (x: color image, y: b/w image)



Application example: predicting 3D molecular structure

Learning Gradient Fields for Molecular Conformation Generation

1. 3D equivariant representation of molecular structure with distances 
2. Learn a conditional score network for distances with denoising score-matching 
3. Sample by back-propagating gradient from distance to coordinates



Denoising diffusion probabilistic model

Denoising Diffusion Probabilistic Models

Forward “diffusion” process gradually add noise until reaching unit Gaussian distribution

Multiple steps of diffusion is still described by Gaussian distribution 



Simplified objective typically works better

Variational ELBO objective

Which simplifies to 

 is typically defined to be Gaussian and with variance matching the forward diffusion processpθ

+ log pθ(x0 |x1)

Denoising diffusion probabilistic model



Generative adversarial networks

Probabilistic modeling with neural networks: Learn to sample



Generative adversarial networks

Probabilistic modeling with neural networks: Learn to sample

StyleGAN



Formulating Generative adversarial networks as a proper probabilistic model

Discriminator network:

Generator network:   use x~Generator instead of x~model 

Wasserstein  GAN objective: Ex∼data f (x) − Ex∼generator f (x)



Sentence-guided generation: VQGAN + CLIP



Sentence-guided generation: VQGAN + CLIP

https://openai.com/blog/clip/

Original application: 
Text choices

Correct pairs vs incorrect pairs

CLIP: embed sentence and image to the same space 



Sentence-guided generation: VQGAN + CLIP

https://ml.berkeley.edu/blog/posts/clip-art/



Sentence-guided generation: VQGAN + CLIP

Taming Transformers for High-Resolution Image Synthesis

Discrete Z latent space distribution (prior) with transformer modeling
Encoder-Decoder architecture similar to VAE (efficient sampling in Z space)



DALLE-2 Replace optimization-based 
generation with “prior”+decoder

Autoregressive “prior”

Diffusion “prior”



DALLE-2 Replace optimization-based 
generation with “prior”+decoder



ImaGen: CLIP-free GAN generator architecture 
for image generation

Photorealistic Text-to-Image Di!usion Models with Deep Language Understanding

A dragonfruit wearing karate belt in the snow

From pretrained language model 

(T5 XXL)

U-Net

U-Net



Reinforcement learning

Image credit: daily.doodl @ instagram

Given state, choose action, get reward



Deep Q learning: 
Predict future rewards with deep networks 

Q(state, action)  =  maximal future rewards (with the optimal actions)

Bellman equation

Q Learning

Minh et al, 2013 Playing Atari with Deep Reinforcement Learning 

Training: minimize MSE



AlphaGo - surpass human-level game playing in Go

SL policy network: predict expert human moves Value network: predict outcome of self-play

RL policy network: optimized by self-play

REINFORCE algorithm (Williams, 1992)

(the nature publication version)

Silver et al., 2016, Mastering the game of Go with deep 
neural networks and tree search

convnet / GLM

convnet

convnet



AlphaGo - Monte carlo tree search

Discounting more visited node
u(s, a)∝P(s, a)/ (1+N(s, a))

AlphaGo Zero: 
Train policy network using MCTS policy

Final game play:



Learning without access to environment during 
planning (MCTS)

Dynamics model that  
captures the environment

Learns a representation of  
game state

MuZero: 
Training model without access to the environment during MCTS



AlphaFold2 - X-ray level atomic resolution prediction



AlphaFold v2.0

Jumper et al., 2021

Overall structure

Sequence model structure



AlphaFold v2.0

Jumper et al., 2021

Sequence model structure
1D representation

2D representation

Template protein data also included 
(torsion angles)

+



AlphaFold v2.0 : model structure

Jumper et al., 2021

Sequence model structure
1D representation

2D representation

Gated transformer + linear transformed 2D bias



AlphaFold v2.0 : model structure

Jumper et al., 2021

Sequence model structure
1D representation

2D representation

Gated transformer



AlphaFold v2.0 : model structure

Jumper et al., 2021

Sequence model structure
1D representation

2D representation

Linear - ReLU- Linear (with LayerNorm)



AlphaFold v2.0 : model structure

Jumper et al., 2021

Sequence model structure
1D representation

2D representation

Outer product -> linear : more flexible than inner product Dot product (inner product)

Outer product

Linear layer



Jumper et al., 2021

Sequence model structure
1D representation

2D representation

Similar to row-wise gated self attention

AlphaFold v2.0 : model structure



AlphaFold v2.0 : model structure

Jumper et al., 2021

Sequence model structure
1D representation

2D representation

Similar to row-wise gated self attention-based transformer



AlphaFold v2.0 : Recycling mechanism

Jumper et al., 2021

X → Y

X + Y* → Y

Simple approach:

Recycled / recurrent prediction:

Learn to iteratively refine rather than jumping right at the results



AlphaFold v2.0 : Structure module 

Jumper et al., 2021

From intermediate representations to 3D coordinates 



AlphaFold v2.0 : Structure module 

Jumper et al., 2021

From intermediate representations to 3D coordinates 

Side chain angles are  
computed by per-residue network 



AlphaFold v2.0 : Structure module 

Jumper et al., 2021

Invariant Point Attention module

equivariant to the rotation of backbone frames


