Deep learning for probabilistic models

Why Toward tractable inference for more expressive probabilistic models

« Tractable inference for intractable distributions (unnormalized density)

Posterior distribution (6| X, a) = p(X | 0)p(6 |) x p(X | 0)p(6 | @)
(X | a)
Energy-based models P(z) = %exp f(x)

* (Guide the design of deep learning models

« (Complex generative tasks

Similar to deep learning, inference method are often gradient based

 Variational inference

« MCMC (e.g. Hamiltonian Monte Carlo uses gradient to speed up sampling)

http://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html

Deep learning for probabilistic models

Why Toward tractable inference for more expressive probabilistic models

« Tractable inference for intractable distributions (unnormalized density)

Posterior distribution (6| X, a) = p(X | 0)p(6 |) x p(X | 0)p(6 | @)
p(X |)
Energy-based models P(z) = %exp f(x)

Potential approaches for NN-assisted inference

* Neural variational inference (variational autoencoder, diffusion probability model*)

 Neural MCMC sampler
e Design probability model with tractable & flexible distribution

 Neural autoregressive model (e.g. transformer language model)
 Normalizing flow
 Neural ODE (continuous normalizing flow)
 Implicit probability model with sampling capability
 (Generative adversarial network™

e Diffusion probability models*

Neural variational inference

Use neural network for describing P(X|Z) or Q(Z|X)

a)

Kingma and Welling, 2014 Auto-Encoding Variational Bayes

Neural variational inference

Use neural network for describing P(X|Z) or Q(Z|X)

-~

~

S

log po(x'")) = Dx1.(q4(z[x")||pe(z|xV)) + L£(8, ¢; x*)
log pe(x\V) > L(6, ¢;x) = Ey, (a1x) [— 10g g (z|x) + log pe(x, z)]

_ —DKL(q¢(Z|X(i))||P0(Z>) + qub(z|x<i)) [logpe (x(i)|z)}

The variational objective

Kingma and Welling, 2014 Auto-Encoding Variational Bayes

Backpropagation over stochastic units:
Reparametrization trick

How to compute good gradient estimate of

—Drcr.(4(2l%) 106 (2)) +E gy a0y |logpe(xV|2)]

Gradient of expectation -> expectation of stochastic gradient

v,u,crEzwy,a[f(z)] — Ezfv,u,a[f(z)vﬂ,d 10g (p(zm, 0))] v,u,aEewp(e) [f(Z)] — Eewp(e) [V,u,,of (g(:ua g, 6))]

Williams, 1992 “REINFORCE” estimator Kingma , et al. 2014. Auto-Encoding Variational Bayes

Backpropagation over stochastic units:
Reparametrization trick for discrete variables

The Gumbel trick for sampling from discrete distributions P(X = k) x o

G = —log(—log(U)) withU ~ Unif|0, 1]

X = arg max (log ar + Gy) -

Softmax function for approximating the max operation with a differentiable function

osﬂ o'(z) j= forj=1, ..., K

Discrete variables can always be represented by binary vectors

Toward flexible and normalized density models

_DKL(QdJ(Z'X(i))”pO (z)) + E g (z1x®) [logpo (X(i)|z)}

1.Fully factorized models

Neural autoregressive models

Toward flexible and normalized density models

2. Invertible transformations (Flow models)

Examples:

NICE

determinant fixed

Dinh 2015, NICE: NON-LINEAR
INDEPENDENT COMPONENTS
ESTIMATION

of (z)
ox

f
O— px (z) = pu(f())|det
X £

Invertible

Normalizing flow ,
autoregressive flow

determinant O(D) time determinant O(D) time

Rezende 2016. Variational Inference with Normalizing Flows)))
Kingma, 2017 Invertible autoregressive flow

Hidden variables are equal in dimensionality.

Toward flexible and normalized density models

2. Invertible transformations (Flow models)

f of(x
Q " px(z) = pu(f(z))|det 8()|.

I

X)
More Examples: | |
ODE Continuous change of variable formula
v
- Log likelihood ;

5Re51dual Network ODE Network B B / 1 8 f dt
4 \ = / log p(z(t1)) = log p(z(ty)) 5 Tr((')z(t)) ,

/

FFJORD: Unbiased estimate of Tr(4L) with €7 ZLe

Depth
o [N w

)
57
L
5 0 5 0 5

Input/Hidden/Output Input/Hidden/Output

determinant fixed

Chen 2018, Neural ODE Grathwohl 2019: FFIORD

Hidden variables are equal in dimensionality.

Probabilistic inference for trajectories using SDE-BNN

Drift function Diffusion function

dwt = f(wt, t) dt -+ g(wt, t) dBt,

Infinite dimensional ELBO

Variational approximate

Xu 2021, Infinitely Deep Bayesian Neural Networks Prior drift function posterior drift function

with Stochastic Differential Equations

Score-matching for partition function-free generative
model fitting

Energy-based models P(z) = %exp f(x)

score := gradient of log probability wrt x

Se(x) = Vx logPO(x) — _foO(x) + Yx log Zg = _vxfO(x)
=0

Minimize Fisher divergence Epx ||| Vxlogp(x) — ss(x)||3]

1

EqUivalent to Epd [tr(vxsm (X; 0)) + 5 ”Sm(x; 0) ||§] ' Hyvirinen (2005)

Q) = [@) [IV10ga(a) ~ Viogp(@)lf] da <=> Q= [plo) |Alogala) + 5V loga(@)]] do + const,

However, trace of Hessian is usually intractable / too slow

Sliced score-matching (random projection) Denoised score-matching

1

1 N N
Ep, Epy, [VTVxSe(X)V +5 Ise(x)]l3 §Eqa (&%) paa (0[50 (X) — Vz log g, (X | x)]|3]-

http://yang-song.github.io/blog/2021/score/

Sample from p(X) using its gradient: Langevin dynamics

Initialize x from arbitrary distribution z; ~ N(0,1).
Xiy1 «— X; + €Vylogp(x) + V2ez;, i=0,1,---,K, e—>0
K — oo

NLTTHTTS TS T T ™ "™ "8« \J 4 ’

NI S S Do T
S R AP I
\x‘}/////l‘ (IR T
;.‘.*. ; -l-/- . -’- 7-/-’-f '-*-\
\ -‘ . ’- ' -l -/- / y - 4 -f/ - ;- ; -; B :- :
e
SR ».’.;;./.4/..1. ’ t\\

' ABRININE =22
........ REBNE ==

boe e e s s e o o s o el wlel Mk

A [R R T N e, SN

l.e. once we learned the score function, we can sample from p(X),

Sample from p(X) using its gradient: Langevin dynamics

Initialize x from arbitrary distribution z; ~ N(0,1).
Xiy1 «— X; + €Vylogp(x) + V2ez;, i=0,1,---,K, e—>0
K — oo

N\\N‘\'\-‘ b R U R v
....................

...................

Z ST ISR
N SR AP I
.\.x.&.;./'/"./'l'/'l".""\
; -\ . *- ; -, -/- /- - ’- 7 -/ - ,- f -* -*- N
\ I‘l*l' /-/-, /- 4 -f/-;- ; -;-:-:
e
RN ”1//1’1\\

AplNIE =22
oo oo L.l RN ==
....... EERRNr=

DI e R o N A

l.e. once we learned the score function, we can sample from p(X),

however...

Learning the score function with data + noise

What noise level? Use multiple! Annealed Langevin dynamics

Generative Modeling by Estimating Gradients of the Data Distribution

Score-based generative modeling with stochastic
differential equations (SDEs

Multiple noise-levels -> infinite noise levels (SDE)

—— Stochastic process

Converge to a
static distribution
(prior distribution)

dr; = —0z; dt + o dW;

Score-Based Generative Modeling through Stochastic Differential EqQuations.

https://arxiv.org/abs/2011.13456

Score-based generative modeling with stochastic
differential equations (SDES)

Score-Based Generative Modeling through Stochastic Differential EqQuations.

https://arxiv.org/abs/2011.13456

Score-based generative modeling with stochastic
differential equations (SDES)

Learning the score function with infinite noise levels (SDE)

score-matching Ep(x)[[| Vx log p(x) — s6(x)|[3]

SDE score-matching Eteu(0,1)Epi(x) [M(2) || Vx log pe (%) — so(x, t)|[3]

Score-Based Generative Modeling through Stochastic Differential EqQuations.

https://arxiv.org/abs/2011.13456

Score-based generative modeling with stochastic
differential equations (SDES)

Sampling from reverse SDE
Ax « [f(x,t) — g°(t)se(x, t)| At + g(t)4/ | At|zs
Convert learned SDE to and ODE with the same distribution

(probability flow ODE): allows computing likelihood!

dx = |f(x,t) — %g2(t)Vx log p(x) | dt.

Score-Based Generative Modeling through Stochastic Differential EqQuations.

https://arxiv.org/abs/2011.13456

Score-matching for solving inverse problems

P(Y|X) Solve P(X|Y)

Inverse problems are typically a family of problems, which is easy to compute in one
direction, but hard to compute in the reversed direction

Vxlogp(x | y) = Vxlogp(x) + Vi logp(y | x).

Image colorization (x: color image, y: b/w image)

Application example: predicting 3D molecular structure

1. 3D equivariant representation of molecular structure with distances
2. Learn a conditional score network for distances with denoising score-matching
3. Sample by back-propagating gradient from distance to coordinates

[Input Graph ~ b Z {) Langevin
PP d—d L2 : 03 +0.7 Dynamics
| -0.
[H\ /H] _ Loss | | ‘ :,(: —> ‘ Q >
° 1 : -0.2
| x y z
J\ Score 02 I 02 o .
N(0,671) |12 Sp 0.3 ' |-03| ChainRule H [+02[+03/+0.1| | — <« Attraction Force
> (17 = |07 : +0.7 > 11 |-02/-0.4]-03 —=p Resultant Force
. |
d so(d | se(@ so(R)
(a) Training I (b) Score Estimation Y,
1

Learning Gradient Fields for Molecular Conformation Generation

Denoising diffusion probabilistic model

Forward “diffusion” process gradually add noise until reaching unit Gaussian distribution

Multiple steps of diffusion is still described by Gaussian distribution

q(x¢|x0) = N (x¢5 vV auxo, (1 — a)I) o =1— 5

Denoising Diffusion Probabilistic Models

Denoising diffusion probabilistic model

Variational ELBO objective

Which simplifies to +1og py(xy| %))

Simplified objective typically works better

Dy is typically defined to be Gaussian and with variance matching the forward diffusion process

Probabilistic modeling with neural networks: Learn to sample

Generative adversarial networks

ngn mdz)lx V(Gy,Dy) = Ex~p, [10g Dy(X)] + Ezopa[log(l — Dy(Go(2)))]

Probabilistic modeling with neural networks: Learn to sample

Generative adversarial networks

StyleGAN

Formulating Generative adversarial networks as a proper probabilistic model

1 dlog P of (x Of (x
P(‘T) — E CXPp f(.’]?) 22 = Erndatal](;<0)) — Eyrmode];9))

Generator network: use x~Generator instead of x~model

Discriminator network: f(x)

Wasserstein GAN objective: Ei.data/(¥) — E£._generator./ (%)

Sentence-guided generation: VQGAN + CLIP

Sentence-guided generation: VQGAN + CLIP

CLIP: embed sentence and image to the same space

1. Contrastive pre-training

pepp.er the Text

aussie pup ' Encoder
Image
Encoder

Correct pairs vs incorrect pairs

1-1 'T1

12'T1

Is'T1

IN'T1

IZ.TZ

IS'TZ

IN'T2

I-’ 'T3

IZ‘TS

IN'T3

I1 'TN

Iz'TN

Is'TN

IN 'TN

Original application:
Text choices

https://openai.com/blog/clip/

Sentence-guided generation: VQGAN + CLIP

How CLIP Generates Art

Forward Pass:

Push a latent through the generative model to produce an image. “Starry N|ght”
Then pass the image to CLIP’s image embedder to measure the
image’s similarity with the text prompt ;
CLIP text embedder
g some generative PL'P embedding similarity
:<; —> model (e.g. BigGAN Image —*| measurement (we want to find an
g, or StyleGAN) embedder image that maximizes this)
\—/\om«n image: (INs is a GIF of the
sequence of images found over the
course of opSmization)
') repeat forward and backward BBa?kgr':p\z;?t?tjhroPugahSC%P and the generative model, all the way back
\ passes until convergence to the latent vector, and then use gradient ascent to up&ate the latent,

bringing the image slightly closer to matching with the text prompt.

https://ml.berkeley.edu/blog/posts/clip-art/

Sentence-guided generation: VQGAN + CLIP

Encoder-Decoder architecture similar to VAE (efficient sampling in Z space)
Discrete Z latent space distribution (prior) with transformer modeling

Taming Transformers for High-Resolution Image Synthesis

DALLE-2 Replace optimization-based
generation with “prior’+decoder

CLIP objective i img
- > | | encoder
"a corgi B
T
playing a
flame [E&XEE & | T Autoregressive “prior”
throwing
" —1 ~H — >
trumpet 00000
__ O O
—O»)» R
O O
prior

Diffusion “prior”

DAL

—-2

Replace optimization-based

generation with “prior’+decoder

ImaGen: CLIP-free GAN generator architecture
for image generation

From pretrained language model
(T5 XXL)

U-Net

U-Net
A dragonfruit wearing karate belt in the snow

Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding

Reinforcement learning

Image credit: daily.doodl @ instagram

>[Agent]

reward action
r
! a,

state

s | Environment

Given state, choose action, get reward

T

Deep Q learning:
Predict future rewards with deep networks

Q Learning

Q(state, action) = maximal future rewards (with the optimal actions)

Bellman equation

Q(s,a) =r +ymax,Q(s', a")

Training: minimize MSE

Minh et al, 2013 Playing Atari with Deep Reinforcement Learning

AlphaGo - surpass human-level game playing in Go

(the nature publication version)

d Policy network a P Value network
T : 8888338
° PS - +% 33344443
: +4444+4 444

®
. SLK.
5 %

38;‘_-— \° 3 35

)

SL policy network: predict expert human moves Value network: predict outcome of self-play
convnet / GLM l / convnet

RL policy network: optimized by self-play

convnet

REINFORCE algorithm (Williams, 1992)
Silver et al., 2016, Mastering the game of Go with deep

neural networks and tree search

AlphaGo - Monte carlo tree search

a b c d
Selection Expansion Evaluation Backup
N\ Q + u(P) AN

[B[fee Rai [+ Rai

Q + u(P) /“ax /
(1) I o(TeT) B
Discounting more visited node 1.3/ \P | f
u(s, a)<P(s, a)/ (1+N(s, a)) A Final game play:

|
(453 2 | ()8

AlphaGo Zero:
Train policy network using MCTS policy

Learning without access to environment during
planning (MCTS)

MuZero:
Training model without access to the environment during MCTS

Learns a representation of
game state

Dynamics model that
captures the environment

Alphalold?2 - X-ray level atomic resolution prediction

AlphaFold v2.0
Overall structure

Seqguence model structure

Jumper et al., 2021

AlphaFold v2.0

Sequence model structure

1D representation

2D representation

Template protein data also included
(torsion angles)

P

Jumper et al., 2021

AlphaFold v2.0 : model structure

Sequence model structure

1D representation

2D representation

I

Gated transformer + linear transformed 2D bias

\J
. gating (rq,hil

keys (r,.h,c) [U

?) M(SA re;))r. 'a_ ; g MSA repr.
D S.I.C) = dot-product attentio = : (s.rc)
(2> input(rc,) o affinities weigrlnsn . > updates (r.c_) |)
Y = (1", (T h) S)

pair i

representation paliblas

(rrc,) £ (rgryh)

Supplementary Figure 2 | MSA row-wise gated self-attention with pair bias. Dimensions: s: sequences, r:
Jumper et al., 2021

residues, c: channels, h: heads.

AlphaFold v2.0 : model structure

Sequence model structure

1D representation

2D representation

Gated transformer

g

=
/-(Linear cm—’(h,c))-(sigmoidD > ;”

|

g —(Linearc_—(h.c)) P val. (s,h,c) 'U :
o -

MSA repr. |4 —— MSA repr.
ey |3 (nearc,) ———>foh 6,0 (s1,)
~D £ il R

))

- 5 dot-prod. attention <
S atmos weichts [l —(o)
) (s:S,:h) (S4:8,:0) 5 l
E3 s B °

Supplementary Figure 3 | MSA column-wise gated self-attention. Dimensions: s: sequences, r: residues,
c: channels, h: heads.

Jumper et al., 2021

AlphaFold v2.0 : model structure

Sequence model structure

1D representation

2D representation

Linear - ReLLU- Linear (with LayerNorm)

Cg MSA {% MSA
representation |—(| inear ¢ — 4c)= relu)= Linear 4c_—c_ > representation
% (src.) m ’D_C H - % (s.rc.)

Supplementary Figure 4 | MSA transition layer. Dimensions: s: sequences, r: residues, ¢: channels.

Jumper et al., 2021

AlphaFold v2.0 : model structure

Sequence model structure

1D representation

2D representation

Outer product -> linear : more flexible than inner product Dot product (inner product)

—_— >
MSA repr. (s,r,c) |

pair repr. (r, 1, C,)
i j j
— —
K le1 18 Outer product
[@ » i
<
I3 |
outer
mean s Linear (c,c)— c
product 8 5| C Linear Iayer
=3

Supplementary Figure 5 | Outer product mean. Dimensions: s: sequences, r: residues, c: channels I

er et al., 2021

AlphaFold v2.0 : model structure

Sequence model structure

1D representation

2D representation

Similar to row-wise gated self attention

pair repr. (Linearl CZ_"D Q_inea: CZ_)(D
(rr.c,) (sigmoid) (sigmoid) M pair repr. (,r.c,)
i I l m‘ left edges (r,C) P_é l »?_(sum r)—(LayerNorm)—Q_inear c_,cz) \9/ ‘ >O i
j —@m—b\ right edges (r,c) | @

j i

Supplementary Figure 6 | Triangular multiplicative update using “outgoing” edges. Dimensions: r: residues,
c: channels.

Jumper et al., 2021

AlphaFold v2.0 : model structure

Sequence model structure

1D representation

2D representation

Similar to row-wise gated self attention-based transformer

Y
central edges (rq,h,c)‘l|

/-CLinear c;»(h.c))—(sigmoid)
| Linear c,—(h,c)) P left edges (r,h,c) '.I
left edges (r,,h,c) ,'
pair S LLL_LLL L= pair
representation < | representation
(trc) <] | T (trc)
_ 3 dot-product attention s
Linear c,—(h,c) - affinities +) weights | 5 Linear (h.c)—c, Updates (rc)
o
3 (rpr,:h) (ryr,:h) g
: |
- right edges
L

Supplementary Figure 7 | Triangular self-attention around starting node. Dimensions: r: residues, ¢: chan-

nels, h: heads Jumper et al., 2021

AlphaFold v2.0 : Recycling mechanism

Learn to iteratively refine rather than jumping right at the results

Simple approach: X =Y

Recycled / recurrent prediction: X+Y* =Y

"%

Jumper et al., 2021

AlphaFold v2.0 : Structure module

From intermediate representations to 3D coordinates

Jumper et al., 2021

AlphaFold v2.0 : Structure module

From intermediate representations to 3D coordinates

Side chain angles are
computed by per-residue network

Jumper et al., 2021

AlphaFold v2.0 : Structure module

Invariant Point Attention module

o pairvalues
(rr.c,)

euny

>
pair ir bi attention =
i i | W DD S weights s Linear (h,C,)—C
representation Linear ¢,—h > / E B
(r'r'cz) < (fq,fv.h) \ (rq'rwh) g_

= Linear ¢_—(h,c) = —— values (r,h,) 1'

~(Linearc_—(h,c) f » keys (r,hc) L'

I

a -

° o dot-product) 4 attention Y

() Sigle ropf (16)—<—Linear ¢, .9) g afiniies || —p()—(sotmaxs,)—4—> weighis ——(near (-0,)>-(H)—> |_update (ic,)
g E (rgr,h) i (" h) 5
=2

gammas (h,) il

[
|

IEEREEN IEREERS
output (rq,h C) ”

? i = py|
) all el | [2)
= < H:: squared L. o a | a |‘
£ < distance J/ : < &
Linear ¢_—(h,p,3) 7] 3 Y ;» weights = = Linear (h,p',3)—C
m a 2 affinities g = 4l -
5 i (b e g E
g g g 2)
o o »

coordinates in
local frames

Akeypt;}m \,l -('_(:)_ ’MU N ‘ ‘] ’ N

value pts. (r,h,pi‘,s)ﬂ' - #) - |value pts. (rv,fp',wl

coordinates in
local frames
backbone frames j
\ (r, 3x3) and (r,S)O

we<

coordinates in the global frame

equivariant to the rotation of backbone frames

Supplementary Figure 8 | Invariant Point Attention Module. (top, blue arrays) modulation by the pair rep-
resentation. (middle, red arrays) standard attention on abstract features. (bottom, green arrays) Invariant
point attention. Dimensions: r: residues, c: channels, h: heads, p: points.

Jumper et al., 2021

