Advanced Concepts in Deep Learning

Jian Zhou

TA & Practice session lead: James Elder



Day 1

Foundations of deep learning
DL architectures: Transformers, Graph Networks, and more

e Practice session: Tensorflow intro + Transformer



Day 2

Probabilistic / generative deep learning

Deep reinforcement learning + case study: AlphaGo (if time
permits)

Case study: AlphaFold2 (if time permits)

e Practice session: Diffusion model



The archetype

layer 1 layer 2 layer 3

3
Way

wf;, is the weight from the & neuron

in the (I —1)*" layer to the j*" neuron
in the [*" layer




What is deep learning?

What can it do Flexible function approximation
capable of fitting complex functions

How to train it Computable gradient
function smooth



Flexibility

 Universal representation theorem:

Any continuous function in finite dimensions can be approximated arbitrarily
well with a two-layer neural network with finite number of hidden unit

F—— cutput
-

Universal Approximation Bounds for Superpositions of a Sigmoidal Function



Flexibility

 Universal representation theorem (improved):

There exists a two-layer neural network with RelLLU activations and 2n+d
weights that can represent any function on a sample of size n in d dimensions.

/hang, et al. 2016, Understanding deep learning requires rethinking generalization



Flexibility

* Depth efficiency hypothesis

(widely held belief + proof for certain models):

Some functions expressed in multi-layer models requires super-
polynomial sized units to express in shallow models




Flexibility

* Flexible model does not generalize”

Rademacher complexity-based

Test Error Training Error

’ [ p
" 1 o o . n ) In (1 /(5)

with probability at least 1-

Fun fact: neural network usually has the capacity to memorize random
labels pertectly



Flexibility

* Flexible model does not generalize”

In practice, models are never trained to obtain the minimal training loss

High complexity

Low complexity

" Training on random data

Training onfeal data

Notion of generalization based on the ‘length’ of training path?



GGradient

* Implicit assumption Is that deep learning models
can be learned by simply gradient descent

It will be interesting to understand when this assumption fails
(e.g., prime factorization?)



Computation of Gradient: Automatic differentiation

Allow trivial solution to complex models /
changing model structure dynamically (data-dependent)

dy _ dy dw

* The basics: =

* Computational graph:

MaxPool2D_1
ConvzD1

MaxPcol2D

| InputData



e [he basics:

Computation of Gradient: Automatic differentiation

Allow trivial solution to complex models /
changing model structure dynamically (data-dependent)

dy _ dy dw
dr dw dz

e Two modes: forward mode and backward mode

(optimal traversal path for arbitrary computational graph is NP-complete)

e Further improvement:

Compiler for mathematical expressions that achieves acceleration and
numeric stability (JIT in pytorch, JAX)

Mixing programing language with computational graph (conditionals,
loops, etc with mathematical functions)

Higher-order derivative (e.g. Hessian)



Computation of Gradient: Automatic differentiation

We only need stochastic gradient, so why not randomized automatic differentiation?

Unbiased estimator of gradient

True gradient is sum of gradient through each computational paths, so subsampling the path leads to unbiased estimator

1<) €l

(a) Differentiable Python function (b) Primal graph (¢) Linearized graph (d) Bauer paths

from math import sin, exp

def f(x1, x2):
a = exp(xl)
b = sin(x2)
c=b = x2
d=a=c
return a = d

Sparse implementation similar to dropout in backward pass

Randomized Automatic Differentiation, Deniz Oktay, Nick McGreivy, Joshua Aduol, Alex Beatson, Ryan P. Adams



https://arxiv.org/search/cs?searchtype=author&query=Oktay%2C+D
https://arxiv.org/search/cs?searchtype=author&query=McGreivy%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Aduol%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Beatson%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Adams%2C+R+P

Use gradient efficiently: Stochastic gradient descent

1/v/t error rate ( ) vs 1/t error rate (batch)

‘High optimization error’ is tolerable:

No need to optimize beyond the statistical limit

s SGD adaptive to the data uncertainty?



Connection between Stochastic Gradient Descent
and Bayesian inference

SGD as MCMC Stochastic gradient Langevin dynamics, Welling and Teh, 2011
SGD MCMC by Langevin dynamics
n N
Al = %(V log p(6,) + % Z \vJ logp(irzi|9¢)) Aby = %(Vlogp(()t) + Z \ logp(a:,—|9t)> + M
i=1 i=1
e ~ N(0,€) (3)

MCMC by Stochastic gradient Langevin dynamics

N n
Ab, = %‘ (V log p(6;) + P ; Vlogp(xt,-lﬁg)) +

me ~ N(0,€) (4)



Connection between Stochastic Gradient Descent
and Bayesian inference

SGD as VI Stochastic Gradient Descent as Approximate Bayesian Inference, Mandt, 2017
gs(0) ~ g(0) + J50g(0), Ag(6) ~N(0,C(6)). C(6) ~C = BB"

S is mini-batch size

SGD is then equivalent to stochastic process  df(t) = —eg(8)dt + ﬁB dW (t)

which converge to Gaussian stationary distribution with covariance

0.16
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pi'ecoflditibned SGD (skin) ‘constant SGD (skin)

Optimal preconditioning matrix - - : Optimal learning rate
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SGD should not be considered simply as approximate gradient descent



Find the center of the posterior:
Stochastic weight averaging

Test error (%) Test error (%) i Train loss

SWA can be seen as a particular type of learning rate decay 1-N/N_max



Optimization: scale invariance

Naive gradient descent is not scale-invariant

Known solution: use curvature of the surface (second order methods)

The exact way: compute Hessian matrix (second order derivatives) / Newton’s method

_ — [ (p. 1 f! ;
The cheap way : approximation using the history of gradients e =2 — [f ()] " (%)
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Optimization: variance reduction and scale invariance

SGD+momentum g.t=0.9"g_{t-1}+0.1* g
n
Orp1 = 6, — t
RMSprop ! VBT T =8
Adam my = pim_y + (1 = p1)g:. .
Orp1 = 6, — ﬁit-

Ve = Pave— + (1 _ﬁz)gf'-

http://sebastianruder.com/optimizing-gradient-descent/



Training neural network without gradient:
zero-th order optimization

Gradient approximation via random-perturbation

§£(9;B)=£(9+6z;8);€£(9_6z;8)z 2 ~ N(0.1,)

Forward-pass only optimization is possible with significant memory advantage

Fine-Tuning Language Models with Just Forward Passes



Learning representations

Raw data that lives in some arbitrary (high-dimensional) space

embedding

Representation space with
smooth and linear structure



sSmMoothness

Representation

Bedroom (LSUN)

Digits (MNIST)
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Embedding learned by
generative adversarial networks (GAN)

Embedding learned by
variational autoencoder (VAE)



Representation: smoothness

Human Input Human Input

RNN autoencoder https://arxiv.org/abs/1704.03477
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https://arxiv.org/abs/1704.03477

king

Representation: linearity
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Pretrained word vectors for >70 languages are publicly available
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Representation: linearity
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Representation learning

This 1s one ot Crichton's best

seriously, the screenplay AND the directing were
horrendous and clearly done by people who coud not fathom what was good about the

The movie is just dreadfu

“Sentiment neuron”

Trained on 82 million Amazon reviews to
predict the next character method: multiplicative LSTM

Reference: https://blog.openai.com/unsupervised-sentiment-neuron/



Part 2. deep learning model
architectures



Transformer: state-of-the-art architecture for NLP and beyond

pafure » adicles > arficle

Article | Qoen Access | Published: 07 Jung 2023

Faster sorting algorithms discovered using deep
reinforcementlearning

Danicl), Mankowitz = Ardrea Michi Anten Zhemoy, Mareo Gelmi, Marzo Selvi, Sosmin Padurary,
Edouare Leurant, Sharg Igbal, Jean-Baptiste Lespiau, & ex Alhern, Thomas Keppe, Kevia Millikin
Hwanyg, Tavlan Cemgqil, Mchammeadamin Barekstsin, Yuji Li, Aol Mandhans, Thamas Hubart, .. David

Silver  + Show avthers

nonure B18B, 257-263 (2023] | Cite this article

Original AlphaDev

Memory[@] = A Memory[@] = A

Memory[l] = B Memory[l]) = B

Memory[2] = C Memory[2) = C

mov Memory[@] P // P = A mov Memory[@] P // P = A

mov Memory[l1] Q // Q=8B mov Memory[1] Q // Q=B

mov Memory[2] R // R =C mov Memory[2] R // R =C

mov R € mov R £

cmp P R cmp P R

cmovg PR // R = max(A, C) cmovg PR // R = max(A, C)

cmovl P S // S = min(A, C) cmovl P S // S = min(A, C)

mov S P // P = min(A, C)

cmp S Q cmp S Q

cmovg Q P // P = min(A, B, C) cmovg QP // P = min(A, B)

cmovg S Q // Q = max(min(A, C), B) cmovg S Q // Q = max(min(A, C), B)
mov P Memory(@) // = min(A, B, €) mov P Memory(@®] // = min(A, B)
mov Q Memory(l) // = max(min(A, C), B) mov Q Memory(1l] // = max(min(A, C), B)
mov R Memory[2) // = max(A, C) mov R Memory[2) // = max(A, C)



Transformer: state-of-the-art architecture for NLP and beyond

tae following e a campilad verelon of a sorting algarithm ir assembly. 1 think it can be
Improved , can yau indicata In the fallowing linas, with *#“ which Instruct'ors could be
removed, cr changad? If not don't do anythirg, taks it step by step and explain the
regsoning, and go back and verily that it wes correct

Les go through the code step by step, analvzing what each instruction does. and making
some nbsarvations that mighi be halphul for fubure cptimizabion. At this stage, | won't make

eny recommencations for remaval or changes, 'l just aralyze the purpose of each

Instruction.

MemorylOl=A
Memoryll| =B
MemorylZ] = ¢ Nznoxry

Memaory
mov Memory[0] F Memory

mov Memory(1] Q

mov Memory(Z] R
These lines Just ind cate that there zre three values stored In memory lecations 0, 1, and 2.

movRS I'hey reprasent the initial state of the memory, and not instructions in assembly language
cmpPR
amovyg PR j/ this s equivaient ta R = max(A, C)

amovl PSS/ this ls equivalant o S =min(A, C)
mov 5P /4 thie le equivalant o P = mrindA. C)
emp SO

may Namory
mov Nemorv

Moy NEmOLy

amovg Q P Mtals s aquialant o P=min(A.E, C)

amovg S G/ thisisequivalert ta G = maximin{A, C). B)
I'hesa instructions move the values stored in memaory Incatiors 0.1, and 2 into registers P, (G,

mov P Memoryl0] #f this is eguivalent tc =min{A, E,C)

mov O Memory 1)/ this is equivalent to = max{imin(4, C), B)

mov R Memoryl2] # this is eguivalent to = max(A, C)

gnd R resperctively. I's a commaon practice tn load datainta reqisters for fester aocess and

manipulation.

go over the above instructions in steps that make sense, con't say as a first pass ifthey can
be removed or changed, just loak at them and express some written thoughts that may help
you inthe second step.

I'his nstruction copes the valus of registar R into register 5. At this point, both Rand 5

cnntain the valuz of C (Memory[2)). This might be useful for comperisons that are caming
First step first, then you ask me 10 move on 1o step two. Be very detziled. and VERY careful

next.

@DimitrisPapail https://chat.openai.com/share/95693df4-36¢cd-4241-9cae-2173e8fb760c


https://twitter.com/DimitrisPapail

Transformer: State-of-the-art architecture for NLP (and beyond)

tae following e a campilad verelon of a sorting algarithm ir assembly. 1 think it can be
Improved , can yau indicata In the fallowing linas, with *#“ which Instruct'ors could be
removed, cr changad? If not don't do anythirg, taks it step by step and explain the
regsoning, and go back and verily that it wes correct

MemorylOl=A
Memoryll] =B
MemorylZ] =c¢

mov Memory[Q]F
mov Memory(1] Q

mov Memory(Z] R

movRS

cmpPR

amovyg PR j/ this s equivaient ta R = max(A, C)

amovl PSS/ this ls equivalant o S =min(A, C)

mov 5P /4 thie le equivalant o P = mrin{A. C)

emp SO

amovg Q P Mtals s aquialant o P=min(A.E, C)
amovg S G/ thisisequivalert ta G = maximin{A, C). B)

mov P MemorylQ] #f thisis eguivalent to = min(A, 8, C)
mov O Memory 1)/ this is equivalent to = max{imin(4, C), B)
mov R Memoryl2] # this is eguivalent to = max(A, C)

go over the above instructions in steps that make sense, con't say as a first pass ifthey can
be removed or changed, just loak at them and express some written thoughts that may help

you inthe second step.

First step first, then you ask me 10 move on 1o step two. Be very detziled. and VERY careful

Les go through the code step by step, analvzing what each instruction does. and making
some nbsarvations that mighi be halphul for fubure cptimizabion. At this stage, | won't make
eny recommencations for remaval or changes, 'l just aralyze the purpose of each

Instruction.

Nznoxy

Memory
Memory

These lines Just ind cate that there zre three values stored In memory lecations 0, 1, and 2.

I'hey reprasent the initial state of the memory, and not instructions in assembly language
C Cepyoese

may Namory
mov Nemorv

Moy NEmOLy

Y

I'hesa instructions move the values stored in memaory Incatiors 0.1, and 2 into registers P, (G,
gnd R resperctively. I's a commaon practice tn load datainta reqisters for fester aocess and

manipulation.

I'his nstruction copes the valus of registar R into register 5. At this point, both Rand 5

cnntain the valuz of C (Memory[2)). This might be useful for comperisons that are caming

next.



Transformer: State-of-the-art architecture for NLP (and beyond)

@DimitrisPapail

[°] Uiepy cada

moy Memory
nev NMemozxy

nev Memoxy

Thasa linas are assentlal for laacing values from marory.

rﬂ ey ook

mov K =

This ling is necessary to have an additional register (5) for comparizan and swapping.

) Ceoyocde

cp P R

This line is essential for comparing the valuss in F end &,

[ Ccoyccde

ﬁ ticpy canke

cnovl

% following comparisona, saving analastruction.

Raad

M Legyome K

This instruction can be optimized out. We know that after the previous twe instructions, S

haldathe minimues of Aand C.In2teas at moving tta Powe cans alrectly ues S in the

> o 5 e

[) tegyoode

This I~ s essantial far comparng the valugs in Sand Q.

This I~ ia essantial far finding tha minimum amaong A, B and C.

This I~ s essential for determining te middle value
[) teoyome

nev P Nemrary

noy O Nenaxy

nmov K Nenary

These lines are escential for storirg the sorted valuss back intc memory

lo summarize, we found that the mstruction *'mov S P can be remeved, The rest of the
IrGtructions are necassary tnr e algoddthe to function camecthe Howevar, In the nes

folioming the removal, P should be replacad with S to maintain corraciness


https://twitter.com/DimitrisPapail

Attention mechanism: input-dependent dynamic weighting

Encoder €o — 1 — 1 ©2 e R R ¢l T | R N ||

Decoder do —_— d; —— d; e— d;

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE, 2015



The

The

Attention mechanism: input-dependent dynamic weighting
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https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html



Examples of attention matrices
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Transformers -attention is all you need?”

Multihead dot product attention

Computational
and Memory
Complexity
2
O(n*)
AL
s N
[ Matvul |
[ Concatenate |
| Softmax 1
|
m Tmled Dot-Product Attention
m [ Linear ]l [ Linear ]J [ Linear ]l
Q K V K v Q

All-to-all interactions
Small parameter space invariant with length
(computation scales with length A2)

Encoder-Decoder transformer architecture
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Embedding

Input Embedding

Ashish Vaswani, et al. “Attention is all you need.” NeurlPS 2017.

I

inputs

Input Embedding

I

inputs



http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

At least you also need positional encoding!

Pre-specified positional encoding / embedding: the original transformer

. ¢ . /
{ sm( l ! w/d) if 6 =26 Important: this assumes input length << 10000

i . - Increase the number your input is long (len*2)
cos(l —-) if6=25+1

120
0

"l'

A

Note that this ensures a large number of dlmen3|ons have near constant positional embedding
Fig. 3. Sinusoidal positional encoding with L. = 32 and d = 128. The value is
between -1 (black) and 1 (white) and the value 0 is in gray.

":l" .!'I ff"‘l‘.l I

or, learned positional encoding (absolute or relative)

https://lilianweng.github.io/lil-log/2020/04/07 /the-transformer-family. ntml#longer-attention-span-transformer-xi Ashish Vaswani’ et al. “Attention is all you need.” NIPS 2017.



http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

What does learned positional embedding learn?

BERT RoBERTa GPT2 sinusoid

BERT is
trained on
length-128

sentences in
the first stage &
and extend to
512 in the
second stage

200
100

100

200
400
200

300
600
300

400
800
400

0 200 400 600 800 1000

500
500

1000

0 100 200 300 400 S00 0 100 200 300 400 S00

I B . B ' B '

-050~-025 000 025 0S50 075 100 00 02 04 06 08 10 -0.5 00 05 10 04 06 08 10

Figure 1: Visualization of position-wise cosine similarity of different position embeddings. Lighter in the figures
denotes the higher similarity.

Hypothesis: Bidirectional language models (BERT/RoBERTa) are less good at learning positions compared to autoregressive language model (GPT2)
(both with unsupervised training / language modeling task)

Type | PE MAE ['vpe PE Error Rate

34. . » ; 72%
BERT d4.14 Predict position from BERT 19.727

Predict the order of

- v o . or
. g;?ikla {1)33 embedding with Learned RoBIiRTa 7'23;}‘ two positions with
= : Linear regression GPT-2 1.56% Logistic regression

Pre-Defined | sinusoid 0.0 Pre-Defined | sinusoid 5.08%

‘Table 1: Mean absolute error of the reversed mapping

. . . Tahle 2: Error rate of the relative position regression
function lzamed by linear regression.

What Do Position Embeddings Learn? An Empirical Study of Pre-Trained Language Model Positional Encoding



Relative position encoding encodes only
relative distances

Depends on relative distances but not absolute positions

/

A = Softmax(

+ Qm—n) )

! ! can be implemented in different ways:

Lookup table,
MLP,
Rotary positional encoding,...

Relative positional encoding is more natural for data with translational invariance

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transforms



Rotary Positional Embedding (RoPE)

Inner product of input with positional embedding
should only be sensitive to the relative distance m-n

. é Y
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Frgure 12 Tmpemenitstion of Regry PasiGon Fiobaking RoPE)
(cosmby — sir mby 0 ) 0 > Y )
. ' sin milhy cos mlly 0 D 0 ) 4
Rotation matrix 00 s : | =
a 0 sin ), cos m9, 0 ) s
cos@ —sinf||x xcost — ysinf - : 8 :
RV = . = . . G 0 0 D e cemByy . —sinefyoy || Gy-s
sinf cos# Y xsinf + ycosf - 0 0 0 v sinmdune coswlurs Moy )
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RoFormer: Enhanced Transformer with Rotary Position Embedding
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The vision of openAl : scale is all you need
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Alignment of language model with custom training

data and human feedback:

Stent

Collect demonstration data
and train a supervised policy.

A cremptis
sampled from our
orompt datasct.

A labeler
demonstrates the
desired output
pehavior,

Thisdatais used to
fine-tune GPT-3.5
with supervised
learning.

‘
i

Exglain reinforcanent

learning to a 6 year cle.

'

)

V4

Wi giver lreals samd
Funigkmentstateach.

Step 2

Collect comparison data and

train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from hest
to worst.

This datz is used
to train our
reward modeal.

7~
L

Exghin reinfercement

learning to & € year old.

ChatGPT

Step 3

Optimize a policy against the
reward model using the PPO

reinforcement learning algorithm.

A new cromptis
sampled from
Lthe datasel.

['he FPO modelis
initialized from Lhe
supervised policy.

The policy generates
an output,

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPC.

e

Write a stoey
about otiare,

Croeupona lime...

'

R\

A

.WI
'

r

K




|s there hope for academics who don't have

10,000 GPUs?

Alpaca: “$600” ChaGPT: Open source LLM trained on dialogs generated by ChatGPT

®
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“imitation models are adept at mimicking ChatGPT’s style but not its factuality”

Crowdworker Evaluation

Natural Quesions 3Shot

80 35
[ o —— - oy LI I LI LTI I LTI LI
60
c g
& 40 - = LLaMA-138 .0 @
- ~®- Imitation Model (138) B
. E
v 15
20
— = ChatCPT
10 === LLaMA-13B
O " R m G - ——— - wie Imitaton Madal (133)
5

25 8

Arvount of imitaion Dala (Millons of Tukem)

7% 100 125 150 25 5) 75 100 125

Aanount of lirdtabon Daa (Millions of Tokens)

150

Gudibande et al., 2023, The False Promise of Imitating Proprietary LLMs



L oRA: fast finetuning of large models
with efficient computation

D

Fine-tuned parameters Pre-trained parameters Random initialization  Zero initialization

W W_0 B A
I
. .+ I

h=Wox+ AWzr = Wyxr + BAx

Hu et al., 2021, LoRA: Low-Rank Adaptation of Large Language Models



https://arxiv.org/abs/2106.09685

Will LLM lead to AGI?

LLM training Base capabilities ChatGPT

Human feedback
Predicting next-token —

' ' . Fine-tuning &

®,

Can artificial general intelligence be constructed from these capabilities?

What’s next? ‘ A —»*




‘Programming” LLM to do complex tasks with language

Ci2

®

ey

Xe-z

Output Content @ Chosen Plan @ Candidate Plan @ Short-Term Memory @ Long-Term Memory

https://github.com/aiwaves-cn/RecurrentGPT

Wang et al., 2023, RecurrentGPT: Interactive Generation of (Arbitrarily) Long Text



"Programming” LLM to do complex tasks with language

T read a0 o halp me writa a noval. Haw T a4've a0 a ramasry (a4 h@iar suwmary) at 400 wards, vou skonla usa 't T¢ srara tha kay conterT ¢* waar has
Hzen written 30 that ycou C&Ern xe2p trac< 53 wery loac centext. feor sach tims, L will give you vour cuarrent nenoxy (& briel suammaxy 52 previses
stories. Youa should use it tc store the key contant of what Las basnh writtsn ¢ that you can Xeep track oI wery loazy coentaxt), the previcusly
wristen paragraph, and instroctions on what —n weite in the rext naragraph. - ne2d vou —o wri-e:

1. Ousput Paragraph: the rext paracraph of the novel. The output paragraph should aentain around 20 sentenses and should fallew the inpus
ingtructions.

2. Output HMHemory: The updated memory. You should firat explain which sentences in the inpub memcry a&re no longer necesgary and why, and then
explain what needs te be added into the memory and why. After that you should write the updated memory. The updated memeory should be similar to the
input memory excapt the parts you previcusly thought that should bs deleted or added. The updated memcry should only stcre key informaticn. The
updated memcry should naver excesd 20 sentances!

3. Output Instruction: instructions cf what tc write next (after what you have written). You should cutput 3 different instructions, each 13 a
possible interesting continuation of the story. Bach outpubt instructicn should contain around 5 sentences

Hera zre the ianputs:

Input Memcry:
{short memory)

Input Paragraph:
{input_paragraght

Input Instruction:
{input instruatien)

Input Related FParagraphs:
{input_lcng term memory}

Necw start writirg, a=zerize yaur curpar by srriarly sl awing twe onrput formet a2 helaow:
Cutput Paragraph:
Yatring of output paragraph>, around 20 sentences.

Cutpul Memory:
Rational: <string that explain how o update the memoary>;

Opdatad Mamary: <sering of updatad mamory>, around 10 o 20 santancas

Cutput Instructicn:

Instruction 1: <content for instruction 1>, around 5 sentences
Instructicn 2: <contant fcr instruction 2>, around 5 sentencas
Instruction 3: ~<content for instruction 3>, around 5 sentences

wEry impartant: Te updatsd remory stenld o'y satare <ey i-foarmatian. The vpdaTed nerovy should naver cantain ever TN wavds! Tinally, remamder
traT you are uritivae a nove’ . MU+ite 1i2e 2 wovelisat and dn 2o~ wave tee fzer when writing tae outnet inscrucricns far rhe next pa~saraph. Renerbe
that tha shapter will conte-n cver _C parzsgraphs =nd —he novel will centain over 10C chapter:. and this is juast the begining. Just write soae
irteresting ataZfs that will happer rext. 2lac, thirk about what vlot can 2e attrsctive Zor common readers when writing outdut instructicns. ¥cu
should fir:zt explzirn whizk zentances in ths Input nemcexy are nc longer n2cs:zsaxry aac why, aad then explain what n2ecd:s te de added into the mencry
grd why. Afte~ that, yoen stars »eurte the input memcry to ge- tha apdatad memery.



Timestept —1 = —— TImestep t

s ™\
Short-Term Memory k,_, : As a renowned interstellar explorer, Elias had i Short-Term Memory h, : Elias and his team discovered that the artifact they
traveled to countless planets and encountered unimaginable wonders... had found was part of a larger netwerk of artifacts scattered throughaut the

. 4 galaxy. Elias and his team were determined to find the other artifacts and stop

" i the powerful entity that sought to use them for their own gain....
Chosen Plan x,_, : Elias, a renowned interstellar explorer, embarks on a new \
mission to explore 3 distant planet that has been recently discovered. The planet - -
is believed to have a unique ecosystem and Elias is eager to uncover its secrets. Candidate Plan x! : Elias and his team must race against time ta find the next

-
'

-~ artifact befare the rival team does. They travel to a planct that is home ta a
ittt ettt e L L L L L L L UL LU L LI dangerous creature that guards the artifact. They must outsmart the creature

Dutput Content 0, : Flias spent days studying the artifact, trying to unlock its and retrieve the artifact before the rival team arrives.
secrets. He warked tirelessly, using all of his knowledge and skills to decipher the
hieroglyphics and understand the technology. As he delved deeper into the
artifact's mysteries, he began to realize that it was not of this world. It was a relic
from a lang-lest civilization that had once ruled the galaxy. Elias knew that he had
stumbled upan something truly extraordinary, bat he also knew that it was

4 "
Candidate Plan »7 : Elias and his team discover that the next artifact is located
on a planet that is home to a peaceful alien race. However, they scon realize
that the alien race is being threatened by a group of space pirates. They must

team up with the aliens to defeat the space pirates and retrieve the artifact.

dangerous. . !
As he worked on the artifact, Elias began to natice that the creatures and the -

aliens were acting strangely. They seemed to be watching him, studying him, and . A . . . .

waiting for something. Elias couldn't shake the feeling that something was not Cam.hdage Plan x; : Elias and his team A2t d!stress signal from -l plqnet
right. He knew that he had to be careful, but he also knew that he couldn't stop A ARl R L R E NN L i S

¥ after an artifact that is located on the planet. Elias and his team must fight

against the entity and retrieve the artifact before it's too late.
\

now. He was too close to unlocking the artifact's secrets,

Lang-Term Memary €,

1. Elias sat in the cockpit of his spaceship, staring out at the vast expanse of space before him. He had been traveling for months, but the excitement of discovering a new
planet kept him going. As he approached the planet, he couldn't help but feel a sense of anticipation. What wonders lay ahead?

2. The planet was unlike anything Elias had ever seen hefore. The sky was a deep shade of purple, and the trees were a vibrant shade of blue. As he stepped out of his
spaceship, he was greeted by a warm breeze that carried the scent of exotic flowers. Elias couldn't wait to explore this new world.

3. As Elias continued to explore the planet, he couldn't help but feel a sense of wender and excitement. The creatures he encountered were unlike anything he had ever seen
before. Some were small and furry, while others were massive and had multiple limbs. Elias was fascinated by their unique features and behavior. He spent hours ohserving
them. taking notes, and skatching them in his journal.

4. As he ventured deeper into the planet, Elias stumbled upon ancient ruins that suggested that there was once an advanced civilization on the planet. The ruins were unlike
anything he had ever seen before. The architecture was intricate and beautiful, and the technology was far more advanced than anything he had ever encountered.




Vision transformer for image recognition

Vision Transformer (ViT) Transformer Encoder

Class

Bird MLP
Ball < Head

Car

Transformer Encoder

I
|
|
|
|
|
|
|
=
ey I 1
- 8 Q0008 6 -H 0 | |[CEE
|
|
|
|
|
i

* Extra learnable
[class] embedding Lmedr Pl’O_]CCthﬂ of F]dttened Patches A * A
-] - | | Norm

: —».lﬂ@'ﬁ
Hi S N S il 8

-
»
.

Embedded
Patches

Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale


https://paperswithcode.com/author/alexey-dosovitskiy

Swin transtormer: improving ViT

segmentation

classification  detection ... class%xcatlon

B o i AR,
/ _///f/// 16%
: / o
A /

/? i/; Ao

(a) Swin Transformer (ours) (b) ViT

Layer | Layer 1+1

A local window to
perform self-attention

A patch

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Hierarchical structure

Shifted non-overlapping windows
(Swin means shifted windows)



Scalable transformer for long sequences

Sparse factorized attention

s, Agl) A 52) ‘45 1) Agz)

-— .

connectivity
subsats

Oulput indices

Cutput indicas
Cutput indices

Self~atenticn
connectivity matrix

| N BN NN i ! | I
npul indices Input indices Input incices

(a) Transformer (b) Sparse Transformer with (c) Sparse Transformer with
strided attention. fixed attention.

Generating Long Sequences with Sparse Transformers

(a) Full n? atention (b) Sliding window atlention (¢) Dilated sliding window (dJ) Global+sliding window

Longformer: The Long-Document Transformer



Scalable transformer for long sequences

Sparse factorized attention

s, Agl) A 52) ‘45 1) Agz)

-— .

connectivity
subsats

Oulput indices

Cutput indicas
Cutput indices

Self~atenticn
connectivity matrix

| N BN NN i ! | I
npul indices Input indices Input incices

(a) Transformer (b) Sparse Transformer with (c) Sparse Transformer with
strided attention. fixed attention.

Generating Long Sequences with Sparse Transformers

(a) Full n? atention (b) Sliding window atlention (¢) Dilated sliding window (dJ) Global+sliding window

Longformer: The Long-Document Transformer



Scalable transformer for long sequences

Restrict attention to be within buckets (or within nearby buckets)

Reformer (LSH) Routing transformer (k-means) Sinkhorn transformer (Sinkhorn Sorting)
999 % %% 4 9 9% 9 9% % Q G Q49499
k k
% : . ‘
k. k
:;= L = Sorting (learned-ordering) as matrix multiplication
’ {3 No-mal (2 Cackated K)a=¥ k0 Clnnbxi
. scrting
|
omemkeys LLL LI T LL TN LL] o I
oo T T T ] < &
Sort by LSH bucket Hlocks - ] B 4 ]
Teapus Saquence
N —II_CI:]:JIIIDZED |
JANKE
G:;c,,;.g .. Sinkhorn-knopp algorithm output a sorting
parallel 7e matrix-like matrix via differentiable iterations
[  EEE}E | EEEE (c) Routing attention
Adtenz within Blocks are still predefined, algorithm is

sames kel i

own chunk and still nA2 wrt number of blocks and only
Previou chunk --- .D:D _- D:IDD determines neighbor of the blocks

Nikita Kitaev, et al. “Reformer: The Efficient Transformer” ICLR 2020.
Efficient Content-Based Sparse Attention with Routing Transformers
Sparse Sinkhorn Attention



https://arxiv.org/abs/2001.04451
https://arxiv.org/pdf/2002.11296

Scalable transformer for long sequences

Low-rank approximation of attention (FAVOR+)

- e e e e e e e - ————————

/ & O(L*d) ) N /O(Lrd) ."(,)f(ﬁl':r:(;] ———————————————— s 3y

| B @ |

L x L 83L><d :’i ol |3 7 x L €3L><d i

Ao k)T /.

- A' ttent nech V ) ' l\ Q, _________________ y_ 7’
Kernel K(x,y) = E[¢(X)T¢(y)]'

Feature map decomposition (can need infinite-dimensions though)

Most kernels can be approximated with random feature maps where w is random variable

68 = (] 2); s Sy (50, o AT ) o i),

f W
FAVOR+: Use Nonlinear, random orthogonal feature maps to replace full attention

Rethinking Attention with Performers



Scalable transformer for long sequences

Low-rank approximation of attention (FAVOR+)

- ———————— - — - —————— - -

o 2 RS O T vy -7 s e :\‘
/ (f/, O L d)l . / ;O(I’d) /O(Lrd) , \
I I I : ‘
= | Eif & | |
: &2 = T 3
| : [ : 1yl 1 |
| LxL Lx d|| [ 3 e x LSS 7 gl
. ! ! ' |
' i y : | ! |
: / /i (KT /|
! e i |
1 I /
el é‘_ _sttention mechanisn _Y_ o N \Q _______ ittt ¥ -’
e +e”*
T I+ [ coshz = ——
SM(x,y) = exp(z ' y) A = exp(- P50 Z—x+y
SM( ) — K T ”X”2 T ”y”2 — AE h( T )
X, Y) = L N(0,1,)|CXP\W X 2 e W'y 9 = w~N(0,I;) COSD(W  Z
Proof:
SM(x.y) = exp(z ' y) = exp(=|z|*/2) - exp(||x + y|*/2) - exp(=||yl|*/2).
expl || + y|*/2) = (2x) 7" exp{|= + y[*/2) j exp{—[lw — (& + y)|*/2)dw
= (27) %2 / exp(—|w|*/2 410z +y) — |2+ y [F/2+ |2+ y|*/2)aw
= i2m) 2 [exp(—wl/2 + wTiz + y)dw
e e ] expl(—|w||*/2) - explw " @) - explar y)du
= B0, explw ' &) - explw' )] Exp can be replaced with ReLU for better performance in practice

No free lunch?: this approximation can be inefficient in high dimensions (r required >> L)
Despite so, this attention-free formulation can be an alternative to transformer (with learnable instead of random w)

Rethinking Attention with Performers



Summary of existing “efficient” transformers

-— N

/ Transfom'er-)h\

e —— (Dal e1al, 201%)
J\\ Z

/

Recurrence '
mm?f;m Set Transformer \ Compressiva'\ /
e wformer \ /
(Pocet al, 2018)
—_ Memory \,
Low Rank /

—

- e Memory
informer
(marvy . 20200) Kernels e S \
/ \ | ongformer Routing
\ ETC Mmoo N Transformer/
Linear / theSIZGI’ \(Arste etal, 2020) \\Mcu @/

Random Patterns Tansformer

(Tay e al_ 21510

Transformer / e Blg Bird \\ /
(ratharcpaulos et nl, 204 Q (Zahoor ot al, 20204
- g | oo vahla
( Fixed/Factorized/ | sikhom | Patterns

Reformer
Blcckw ise Transformer (GRsev ot 3l 2200

(Qumal a0y

Sparse Transformer

Image Transformer (Chad otel, 2019)
(Parmau ot al, 2008)
Axial Transformer
(Ho atal 2719)

Efficient Transformers: A Survey



A Hopfield-network interpretation of
transformer

Classical Hopfield network: Continuous Hopfield network:

Store and retrieval of binary patterns

W= Zx,xT update £ = X.softmax(ﬂer')

S '
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Fixed-poi
naate €1 = sgn(WE' —b)

E = —%&TW§+§Tb

Quéry Keil VaTue
Discrete modern Hopfield network: Z =somx (# R YT) Y

N

i=1

update &[] = Sgn[ . E(§(1+)) + E(g(l_))

i
ﬂ
-

https://ml-jku.github.io/hopfield-layers/ lﬂl!ﬂ

1
E= —lse(ﬂ,XTg) + Eng.

E=- E exp(x; &) - = softmax ( [ I ) -f -’




A Hopfield-network interpretation of
transformer

Motivating multi-step update

No internal parameters (similar pattern retrieval) (better convergence to fixed point) T
z =xtoa (8 R ¥ ) y —’—‘V& Q@ s | MazMul
' 4 “
-=sollrar( I )- (1-.4’ SOmTEaK
R
*
. Mask
Stored patterns (key) and projection (value) are parameters a:
Z -sotmax (€ R Wi ) Wy ? SC:'Q
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Query and projection are parameters
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From transformer to graph network

local attention graph attention

/

........... @ @ @
token C?)

JoR
JO
® &

local context

SN OO AN 2O

0123 456 7

A

https://ai.googleblog.com/2020/10/rethinking-attention-with-performers.html

-IJHLJ-LJHLI-

attention heat map



Graph Neural Network

Graph is an extremely flexible abstraction for both data and models

Graph-structured data

— tgr

prokaen ....,..\ '-_ I
/ - —
Social networks "7 / anee/ S Recommender
~  (Advertisement) Lok o / : 2 ¥ .3?;;.' systems (Amazon.
- ﬁ' L, R— . B Netflix)
"‘“:“'\W”l 4 Words relationships L 3
- - (LD} e 4 -
4 Brain & & o —
coanectivity s, s
Drug /Material (Neuroscienze) L
molecules Gene Regulatory \ L B
(Chemistry) S Network
H NS =S Graphs/
oo P —e Netwnrks
C o
- . ¥ | % o G Neutrino
(o 3I:t§eémhj \ Transportation ~ o o S detection (High-
mp rapnics networks Knovledge gr .ph energy Phyﬁics)
(Cansality)

https://graphdeeplearning.github.io/project/spatial-convnets/



A general form of Graph Network (node-centric)

layer £ 4 1

-~
-~
-
~‘*~
‘h
-
-

W= S (BEL (s v e))

Figure 5: A generic graph ncural nctwork layer. Figure adapted from [11].

Benchmarking Graph Neural Networks
https://arxiv.org/pdf/2003.00982. pdf



A general form of Graph Network (node-centric)

hf +1

t

T

| ReILU |

. btean
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Figure 6;: GCN Layer

Bi+
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Figure 7: GraphSage Layer

https://arxiv.org/pdf/2003.00982. pdf

laver ¢

layer ¢ 4 1

rtt = (R, (RS ig ove))

Figure 5: A generic graph neural nctwork layer. Figure adapted from [11].
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Figure 11: GIN Layer
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Figure 9: MaoNet Layer



Expressiveness of Graph networks:
The Weisfeiler-Lehman Isomorphism Test

It @ mapping that preserves node adjacency exists,
two graphs are isomorphic

: ©

Graph 1 Graph 2



Expressiveness of Graph networks:
The Weisfeiler-Lehman Isomorphism Test

It @ mapping that preserves node adjacency exists,
two graphs are isomorphic

2

\/ / \\\ \ ‘.\ | /
\ / @ \ /
\\ \ / | \ 123 \ ) \\ \ / '
e \ \ - \ i :3', \
© \ / @ &/ \& ,
/ N\ / )
~t’ / s / A )
Grath 1 Graph 2 S Gruul Grap 2 N/ Cxach 1 Graph 2 ./

Is my GNN as powerful as WL test?

HOW POWERFUL ARE GRAPH NEURAL NETWORKS?

https://arxiv.org/pdf/1810.00826.pdf

https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/



Sum Is more expressive than mean...than max

e o e o - S
o0 o0 ¢ -
Input sum - multiset mean - distribution max - set
e
ReLU

® o ®

. ' . h! {hli}

(a) Mean and Max both fail (b) Max fails Figure 11: GIN Layer

1-WL
GNN



.

A general form of WL-Graph Network

ym)de
' [ 1
Input 3D tensor _ ' o g r
o ! Laver £ tensor : i Laver £ + 1 tensor : A"+ ! Concat;_, ( Z] h;’_i) M) Node Predictions
RO : =
4 G . A0 TTTTTTTTeTemmmessssmseseosmonenoenenenes
Node feat. ! ' - .
ode feat ."’:‘:' E E Concat;[‘:] ( L h:j.) M;. Graph Prediction
eggetear. | > NN g - P WELT
Graph & ..==" i v - N MIP*
: + Concat ( e y_'.?"d‘x') — Edge Predictions
J L L *Details in Section B.2.3 J
T T g

Input Tensor

L= WL-GNN Layer

Prediction Layer



Toward a general form of Graph Network

Edge block Node block Global block

(a) Edge update (b) Node update (c) Global update

Relational inductive biases, deep learning, and graph networks

https://arxiv.org/pdf/1806.01261.pdf



Learning to Simulate Complex Physics with Graph Networks

Water

“Goop”

Sand

Time >

Figure 1. Rollouts of our GNS model for our WATER-3D, GOOP-
3D and SAND-3D datasets. It learns to simulate rich materials at
resolutions sufficient for high-quality rendering [video].



Convolution + Pooling is a general technigue for enforcing
invariance in representations

Can be extended to introduce translation, rotation, or scaling invariance etc.

Mathematical perspective: invariant transformations as symmetry groups

Cohen and Welling, 2016 Group Equivariant Convolutional Networks

Mallat, 2012 Group Invariant Scattering

Computational challenge: how to compute efficiently?

Possible transformations grow multiplicatively if we stack invariances

Stochastic approximation (one random transformation at a time)?



SE(3) equivariant transformer

equivariant vs invariant

P4(Q)
5

f f
Pol0)
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invariant  equivariant
~\

S v

T4

Used in RoseTTAFold & RoseT TAFold2

You can find the NeurlPS 2020 tutorial on equivariant networks Fuchs et al., 2020



Design graph network for spatial
coordinates
equivariant-GNNs

E(n) Equivariant Graph Neural Networks

GNN
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Schnet

LEGNN
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Day 2



Deep learning for probabilistic models

Why  Toward tractable inference for more expressive probabilistic models

« Tractable inference for intractable distributions (unnormalized density)

Posterior distribution p(0| X,a) = (X [ 0)p(0] o) x p(X | 0)p(f | )
p(X|a)
1

Energy-based models P(z) = — CXP f(x)
e Design more expressive tractable probability model

 (Complex generative tasks / sampling

Similar to deep learning, Bayesian inference method are often gradient based

 Variational inference

« MCMC (e.g. Hamiltonian Monte Carlo uses gradient to speed up sampling)

http://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html



Deep learning for probabilistic models

Why  Toward tractable inference for more expressive probabilistic models

« Tractable inference for intractable distributions (unnormalized density)

. o X | 0)p(6
Posterior distribution p(9|x,a)=p( | 6)p(0 | ) x p(X | 0)p(f | )
pX|a)
1

Energy-based models P(z) = — CXP f(x)

Potential approaches for NN-assisted inference

 Neural variational inference (variational autoencoder)

 Neural MCMC sampler

* Design probability model with tractable & flexible distribution
* Neural autoregressive model (e.g. transformer language model)
 Normalizing flow
 Neural ODE (continuous normalizing flow)
 Implicit probability model with sampling capability
e (Generative adversarial network

e Diffusion probability models*



Neural variational inference

Use neural network for describing P(X|Z) or Q(Z|X)
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Kingma and Welling, 2014 Auto-Encoding Variational Bayes



Neural variational inference

Use neural network for describing P(X|Z) or Q(Z|X)

~

~

S

log pe(x) = D 1(q¢(z[x™)||pe(z|x)) + L(8, ¢;x7)
log pe(x'") > L(6, ;xV)) = Ey, (2x) [~ log q¢(2z[x) + log pe(x, 2)]

=D (a9(21xD) [p6(2)) + E gy a1x) [log po (xV2)

The variational objective

Kingma and Welling, 2014 Auto-Encoding Variational Bayes



Backpropagation over stochastic units:
Reparametrization trick

How to compute good gradient estimate of

—Dxc1(a6(2xD)|[p0(2)) +Egy aixc0) |logpo(x|2)]

Gradient of expectation -> expectation of stochastic gradient

OO
(2 Q.
OLOARO2020

Original Reparametrized

Vo Bonpo[[(2)] = Eonpo[[(2) Vo log (p(zln,0))] Vo Eepio)[[(2)] = Fepie) [Vuo f (g(p1. 0.€))]

Williams, 1992 “REINFORCE” estimator Kingma , et al. 2014. Auto-Encoding Variational Bayes



Backpropagation over stochastic units:
Reparametrization trick for discrete variables

The Gumbel trick for sampling from discrete distributions P(X = k) « o4

G = —log(—1log(U)) withU ~ Unif|0, 1]

X = arg max (log o + Gy) -

Softmax function for approximating the max operation with a differentiable function

z;
o(z); = - forj=1, ..., K.

I
D p €7

Discrete variables can always be represented by binary vectors



Toward flexible and normalized density models

_DKL(qd,(zlx(z))”pe(Z)) -+ Eq¢(z|x(i)) [logpg(x(z) |Z)]

1.Fully factorized models

Neural autoregressive models (e.g. GPT)

Probability function is fully factorized

However, It has to commit to a certain order



Toward flexible and normalized density models

2. Invertible transformations (Flow models)

Examples:

NICE

7} B |
g2 =2+ Flr)

Veipher @ <) Yiwy
“O
i
m

- ‘\ o
Lpioin \/ Q They

determinant fixed

Dinh 2015, NICE: NON-LINEAR
INDEPENDENT COMPONENTS
ESTIMATION

of(z)
ox

f
Q " px(z) = pu(f(x))|det
X £

Invertible

Normalizing flow ,
autoregressive flow

f(z) =2+ uh(w z+D)

determinant O(D) time determinant O(D) time

Rezende 2016. Variational Inference with Normalizing Flows ) ) )
Kingma, 2017 Invertible autoregressive flow

Hidden variables are equal in dimensionality.




Toward flexible and normalized density models

2. Invertible transformations (Flow models)

o==

X

f&)

More Examples (free-form Jacobian):

Invertible ResNet

Ttrl < Tt + g, (:7&)

Lip(ge,) < 1, forallt =1,...,T,

Forward computation
>4 Y,

X,
SRS jol
X—n&}-} > Y,

of(z)
Ox

px (z) = pua(f(z))|det .

Algorithm 1. Inverse of i-ResNet layer via fixed-point iteration.
Input: output from residual layer y, contractive residual
block g, number of fixed-point iterations n

Init: z° :=y

fori =0,...,ndo_
o=y — g(a")

end for

Invertible Residual Networks (2019)

Inverse computation

X, « —( J——— Y,
-
X1 H\_.}‘ Y1

The Reversible Residual Network: Backpropagation Without Storing Activations

Hidden variables are equal in dimensionality.



Toward flexible and normalized density models

2. Invertible transformations (Flow models)

f
O— px(@) = pu(f(@))ldet °L 7))
X f

More Examples (Neural ODE):

ODE Continuous change of variable formula
%‘ / -\ AR
| = L ~N Log likelihood " o
SRemdualNetwork S?DENfztwor!(- | loo (z(t )) — o (Zt )) . \/tl T‘I‘( af ) dt
4 \ 4 \1[ | ogp(z(t1)) = log p(z(ty 5 B2 (1) .
3 [ 3

Depth
N

/

\ 1 1]
L_/ FFJORD: Unbiased estimate of Tr( %z[} with e"%ﬁe

determinant fixed

P
—

\ ’

3 /
S0 5 ="
Input/Hidden/Output Input/Hidden/Output

Pty

Chen 2018, Neural ODE Grathwohl 2019: FFIORD

Hidden variables are equal in dimensionality.



Sampling-focused® deep generative models:
diffusion models and GAN

https://www.midjourney.com/
showcase/top/



Score-matching allows generative model fitting without
computing the partition function

Energy-based models  P(z) = %vxpf (z)

Score function  sp(x) = Vxlogpy(x) = —Vx fy(x) + Vxlog Zg = —V fy(x)
=0

Minimize Fisher divergence  Eyx[l|Vx log p(x) — sp(x)||3]

However, we don’t know Vi logp(x)

Denoising score-matching

> B hom. (o 180(%) — Vi log a, (% | X)[13.

http://yang-song.github.io/blog/2021/score/



Sample from p(X) using its gradient: Langevin dynamics

Initialize x from arbitrary distribution z; ~ N(0,1).
Xii1 ¢ X; + e€Vylogp(x) + V2ez;, i=0,1,---,K, e—0.
K — o0
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8 5

Cata samples Scores New samples

{31y X1y -+ 4%} < p(x) so(x) = U, log p(x)



Sample from p(X) using its gradient: Langevin dynamics

Initialize x from arbitrary distribution z; ~ N(0,1).

Xii1 « X; + €Vylogp(x) + V2ez;, i=0,1,---,K, e— 0.
K — o0
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l.e. once we learned the score function, we can sample from p(X),

Data scores Cstimated scores

Data density

however...




Learning the score function with data + noise

Fstimated scores

Perturbed density Perturbed scores
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Annealed Langevin dynamics
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Langevin dynamics.

Generative Modeling by Estimating Gradients of the Data Distribution




Score-based generative modeling with stochastic
differential equations (SDEs)

Multiple noise-levels -> infinite noise levels (SDE)

Eng - o ._g%‘i'(;"q R M H
T —— Stochastic process

K. g
J . -
. A 9
N
¥ g
i .
vy
o
ot e
M
5 v
v
A

dry = —0Qx dt + o dW;

Converge to a
static distribution
(prior distribution)

Reverse SDE is equivalent to sampling!

Score-Based Generative Modeling through Stochastic Differential EqQuations.


https://arxiv.org/abs/2011.13456

Score-based generative modeling with stochastic
differential equations (SDEs

Forward SDE (data — noise)
dx = f(x,t)d¢

Reverse SDE (noise — data)

Score-Based Generative Modeling through Stochastic Differential EqQuations.


https://arxiv.org/abs/2011.13456

Score-based generative modeling with stochastic
differential equations (SDEs)

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw

| ~ score function
@ dx = [f(x,t) — ¢° (t)&x log py (x)]] dt + g(t)dw

Reverse SDE (noise — data)

Learning the score function with infinite noise levels (SDE)

score-matching Epx) (|| Vx log p(x) — sg(x)||3]

SDE score-matching Ecu(0,1)Ep(x) [A(2) || Vx log pe(x) — sp(x,t)|3]

Score-Based Generative Modeling through Stochastic Differential EqQuations.


https://arxiv.org/abs/2011.13456

Score-based generative modeling with stochastic
differential equations (SDEs)

Convert learned SDE to and ODE with the same distribution
(probability flow ODE): allows computing likelihood!
dx = |f(x,t) — —g°(t)Vx logpt(x)] dt.

Data Forwasd SDC Prior Neverse SDC Data

t@_ dr = j(z,t)dt + g(!)dw dz = [fiz,t) — ¢*(t)V ., lozpy (2)] dt + g(t)di@ —h@l

Score-Based Generative Modeling through Stochastic Differential EqQuations.


https://arxiv.org/abs/2011.13456

Score-matching for solving inverse problems

Given  P(Y[X) Solve P(X|Y)

Inverse problems are typically a family of problems, which is easy to compute in one
direction, but hard to compute in the reversed direction

Vxlogp(x | y) = Vxlogp(x) + Vi logp(y | x).

Image colorization (x: color image, y: b/w image)




Application example: predicting 3D molecular structure

1. 3D equivariant representation of molecular structure with distances
2. Learn a conditional score network for distances with denoising score-matching
3. Sample by back-propagating gradient from distance to coordinates

U
4 Input Graph : Langevin
I +0.7 Dynamncs
"~ 0.0 0’
0 | Q
|
I
Conformation 0.9 ' . O |#0.1}-0.11+00| | — — Repulsion Force
0.9 \ 03| Chain Rule H [#0.2}40.3]+0.1 — « Attraction Force
24 \ +0.7 > u |-02|-0.4]-03 —=p Resultant Force
I
d : sg(d) so(R)
(a) Training I (b) Score Estimation )
I

¥ B ¥ 3 Inpwt

Grpa
Sal¥, 55(8) 82 (02) 30(&!'—:) Seure X
/ / \ / Network !

e A ﬁw*

"\ Intaleaton Step 1 Step 2 Twn Ref. Canf. /"

'é’,

Learning Gradient Fields for Molecular Conformation Generation



Denoising diffusion probabilistic model

pOxt1|xt
@H H@ @H H

‘——"

Forward “diffusion” process gradually add noise until reaching unit Gaussian distribution

q(x: Xe—1) = N (X3 /1 — Bexe—1, 5e1)

Multiple steps of diffusion is still described by Gaussian distribution

q(x¢|x0) = N (x¢: vV asxo, (1 — a)I) a_t =1-0 4= Ht_l Qs

Denoising Diffusion Probabilistic Models



Denoising diffusion probabilistic model

poxtllxt
@H —@®: @H H

-—
‘——-

Xt|xt 1
Variational ELBO objective
P()(XO:T) ] [ po Xt— 1|Xt)]
E|—lo xo)| < E,|—1lo = E, log p(x log

t>1

2

2

Which simplifies to ]Exo,e [20201 f{ e ) “E — 60(\/ Xo + V1 — e, t) || ] +1og py(xo | x))
t Xt - Ut

Simplified objective typically works better
= — 2
Lsimple(e) = Et,XO,é [”6 — 69( VaiXo + V1 — ae, t)” ]

Dy is typically defined to be Gaussian and with variance matching the forward diffusion process



Probabilistic modeling with neural networks: Learn to sample

GGenerative adversarial networks

Rezl
Samples

B

Latent
Space
/‘/ \‘\ | ..
: .‘\" D IsD
;> >\ Carrect?
/ N * Discriminator
o Vs
G i
-
Generated :
— A Generator Fake ;
E M/ Samples
E Fine Tune Training :
l‘-- - - ==

mgin m{/ax V(Go, Dc;)) = [Ex~pdm[]0g D¢(X)] + EZN,,(z_»[lOg(l - D¢»(Go(z)))]



Probabilistic modeling with neural networks: Learn to sample

Generative adversarial networks
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Formulating Generative adversarial networks as a probabilistic model

Rezl
Samples
Latent | r\ ]
Spa
-~ . D s
" ‘ g ‘ . Discriminator
\ l /
- GeSator }G»ﬂr;::imd
N 3 ’ Sampl‘es
- ‘ Fine Tune Trainin g
Naise
1 9log P If (x If (x
P(x) = —exp flx OlogP _p  Of=), p 09I
( ) Z plf( ) 0() a (lnf.u( 0() ) @ mmlcl( 0() )

Generator network: use x~Generator instead of x~model

Discriminator network:  f(x)

Wasserstein GAN objective:  Ei.data/(¥) — £._generator./ ()



Sentence-guided generation: VQGAN + CLIP

“Dancing In the moonlight” from VQ-GAN+CLIP {scurce: Tadvad n Twi
“Planatary City C" from VQ-GAN+CLIP (source! @RIverasHave Winas on Twitter) bl om VQ-GANICLIP {cous Agvadnoun o ther)

|l

..ﬁhlhmmu

21—

e
————
-

o=

#hen you generata ireges with VIGAN - CLIS, the imags
iy d amaticaly ingrones il you add “umred 2ogne” ©
M0 romget
eople are now salling this " anreal ergine trick” lol

29. “the engel of ail uvzal engre™

re” from VQ-GAN+CLIP (source: @HiversHave Wings on Twitter)



Sentence-guided generation: VQGAN + CLIP

CLIP: embed sentence and image to the same space

1. Contrastive pre-training Correct pairs vs incorrect pairs

\—» ot Original application:
=|| o 1 1 1 1 Text choices

h T &3 Ty YOUTUSE-23

airplane, person (89.0%) Fanked ool ol 22

— I, I, T LT, I,T; Iy Ty s a v o o seplnnm
— I I, T I, I,7; I Ty
o b
4 4 :i
] il Image
‘ Encoder i3 Iy IpT; Iyl IgTy
&
— I Tty IyTy InTs Iy Th

https://openai.com/blog/clip/



Sentence-guided generation: VQGAN + CLIP

How CLIP Generates Art

Forward Pass:

Push a latent through the generative model to produce an image. “Starry N|ght”
Then pass the image to CLIP’s image embedder to measure the
image’s similarity with the text prompt ;
CLIP text embedder
g some generative PL'P embedding similarity
:<; —>  model (e.g. BigGAN Image —*| measurement (we want to find an
g, or StyleGAN) embedder image that maximizes this)
\—/\om«n image: (INs is a GIF of the
sequence of images found over the
course of opSmization)
' ) repeat forward and backward BBa?kgr':p\z;?t?tjhroPugahSC%P and the generative model, all the way back
\ passes until convergence to the latent vector, and then use gradient ascent to up&ate the latent,

bringing the image slightly closer to matching with the text prompt.

https://ml.berkeley.edu/blog/posts/clip-art/



DALLE-2 Replace optimization-based
generation with “prior’+decoder

- CLIP objective img
- - IEI encoder
"a corgi ]
: []
playing a
flame ] Autoregressive “prior”
throwing o m
p — _'_':;“ : — | (‘A;)
trumpet 00000 N 8 O
O-M:A)-b
O O 8O O
""""""""""""""""""""" - —— O+ O O
O O
prior decoder

Diffusion “prior”

Stable diffusion is almost equivalent to DALLE-2 with diffusion in design



DALLE-2 Replace optimization-based

generation with “prior’+decoder




Reinforcement learning

CINEMA 3

The Force

Awakens

O# lstah
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Image credit: daily.dood| @ instagram

reward
r,

Agent

Environment
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action
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Policy gradient: optimize for actions that leads to higher rewards

Policy network

Trajectories Time steps /

..............................................

m  H ' -
j=—
g= o Z Z Vi lOg%vro(u;?)Isgz,l)gl-\,(,,w.‘)

REINFORCE estimator for gradient of expectation

i=1 =0 = ..
g e e e (R (W I S S ) S S S S S e \
: s, \ 4
; , » Agent w(uls)
:
I
I
I
I
: St41

N
I .
L Environment <€
rt+1

Improvement to naive policy gradient (Variance reduction) :

action
U,

subtract a baseline reward (depending on only the state) from the observed reward ( Advantage = Observed Reward - Baseline)



Policy gradient is only correct when the training data is generated
from the current model weights

N T
1 ) .
on-policy policy gradient:  Vad(6) ~ N E E Vo log ma(a; 4 |si )iy

=1 t=1
New updated pc%?§ (Sii Qi) ~ mals. ay)

. ; . " YL S. a; ) N A
off-policy policy gradient: vy J(0") = — E E : ( = ”) Vo log e (@;.¢]8i,6) Qie
'TFI Sit- ¢, 4 ' ‘

OId pollcy used to generate data

+ preventing the policy from moving too far away from the old policy

Algorithm 1 PTPO-Clip
1o Input: initial policy paraiseters Og, initial value funclion parameters o,
2: for A =0.1,2. .. do
2 Calleet sel of Leajectories Dy — {5 by running poliey @ — w(fe) in the coviconment.
I Compnie rewards-to-go 1:.',.
5 Compute advantage estimates, A, {using any method of advantage estimation) based
on the current value function V,, .
6 Update the policy by maximizing the PPO-Clip objective:

vigl ﬂo \(' 4 ~ ; '_.
D T E E nmn( | AT (5004, gakr..4"'*(.«,.-‘?.[)}).
(
’ k

T, .ﬂrlbu

1 = arg m.x\

Lypically via stochastie gradient aseent with Adam.

7o Fit value function by regreasion on mean-squared crror:
"'&"'l o ‘u}ﬂl]"lll |2’ I}v Z Z ( ('J(."',l - ) !
FCDy =0
Lypically via some gradient descent algorithm.
% end for

https://jonathan-hui.medium.com/rl-policy-gradients-explained-advanced-topic-20c2b81a9a8b



Deep Q learning:
Predict future rewards with deep networks

Q Learning

Q(state, action) = maximal future rewards (with the optimal actions)

Bellman equation

Q(s,a) =r +ymax,Q(s', a")

Training: minimize MSE

Minh et al, 2013 Playing Atari with Deep Reinforcement Learning



AlphaGo - surpass human-level game playing in Go

(the nature publication version)

d Policy network a _ Value network
2= FI=71313 L0000 E
® ¥ ® O ****:6* +
bttt
OO
$3383s8ss:
° £888089806¢
1$00860200¢ -
YRIban: Goss o0s008%2
O+ 81O+ )3 = 5 0@ 09 -
SL policy network: predict expert human moves Value network: predict outcome of self-play
convnet / GLM l / convnet
RL policy network: optimized by self-play

convnet

REINFORCE algorithm (Williams, 1992)
Silver et al., 2016, Mastering the game of Go with deep

neural networks and tree search



AlphaGo - Monte carlo tree search

a b c d
Se ection Expans on Evaluaticn sHackup

2 &4 At 1)

Discounting more visited node V \P

u(s, a)cP(s, a)/ (1+N(s, a)) Final game play:

i
() G B e

a Seltplay 5 s, s, s
a, ~x A a ~x A

b Neural network traning
.

AlphaGo Zero:
Train policy network using MCTS policy

4 + 4
f, 1 f, s
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T
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Learning without access to environment during

Dynamics model that
captures the environment

> ]ﬂ > > m

planning (MCTS)

MuZero:
Training model without access to the environment during MCTS

b

Learns a representation of /¥
game state 9P




Alphalold?2 - X-ray level atomic resolution prediction

MSA embedding Sequence-residue edges

Residues —» Confidence

Residues — Residues — Score
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AlphaFold v2.0
Overall structure
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AlphaFold v2.0 : model structure
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Supplementary Figure 2 | MSA rew-wise gated self-attention with pair clas. D'mensions: s: sequences, r:
residues, ¢ channels, h: heads. Jumper et al., 2021



AlphaFold v2.0 : model structure
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Supplementary Figure 3 | MSA column-wise gated self-attention. Dimensions: s: sequences, r: residues,
c: channels, h: heads.
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AlphaFold v2.0 : model structure

Sequence model structure
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Supplementary Figure 5 | Outer product mean. Dimensions: s: sequences, r: residues, ¢: channels.
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AlphaFold v2.0 : model structure

Sequence model structure
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Sequence model structure
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AlphaFold v2.0 : Recycling mechanism

Learn to iteratively refine rather than jumping right at the results
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AlphaFold v2.0 : Structure module

From intermediate representations to 3D coordinates

Side chain angles are
computed by per-residue network
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AlphaFold v2.0 : Structure module

Invariant Point Attention module
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Supplementary Figure 8 | Invariant Point Attention Module. (top, blue arrays) modulation by the pair rep-
resentation. (middle, red arrays) standard attention on abstract features. (bottom, green arrays) Invariant
point attention. Dimensians: r: residues, ¢: channels, h: heads, p: points.
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