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Day 1

• Foundations of deep learning

• DL architectures: Transformers, Graph Networks, and more 

• Practice session: Tensorflow intro + Transformer



Day 2

• Probabilistic / generative deep learning

• Deep reinforcement learning + case study: AlphaGo (if time 
permits)

• Case study: AlphaFold2 (if time permits)

• Practice session: Diffusion model



The archetype



What is deep learning?

Flexible function approximation

capable of fitting complex functions

Computable gradient 

function largely smooth

What can it do

How to train it



Flexibility

• Universal representation theorem:


Any continuous function in finite dimensions can be approximated arbitrarily 
well with a two-layer neural network with finite number of hidden unit


Universal Approximation Bounds for Superpositions of a Sigmoidal Function



Flexibility

• Universal representation theorem (improved):


There exists a two-layer neural network with ReLU activations and 2n+d 
weights that can represent any function on a sample of size n in d dimensions.


Zhang, et al. 2016, Understanding deep learning requires rethinking generalization




Flexibility

• Depth efficiency hypothesis 

(widely held belief + proof for certain models): 


Some functions expressed in multi-layer models requires super-
polynomial sized units to express in shallow models



Flexibility

• Flexible model does not generalize?

Rademacher complexity-based generalization bound

with probability at least 1-  δ

Fun fact: neural network usually has the capacity to memorize random 
labels perfectly 

Test Error Training Error



Flexibility

• Flexible model does not generalize?

In practice, models are never trained to obtain the minimal training loss

High complexity

Low complexity

Initialization

Training on random data

Training on real data

Notion of generalization based on the ‘length’ of training path?



Gradient

• Implicit assumption is that deep learning models 
can be learned by simply gradient descent

It will be interesting to understand when this assumption fails 

(e.g., prime factorization?) 



Computation of Gradient: Automatic differentiation


• The basics:


• Computational graph:

Allow trivial solution to complex models / 

changing model structure dynamically (data-dependent)



Computation of Gradient: Automatic differentiation


• The basics:

• Two modes: forward mode and backward mode


(optimal traversal path for arbitrary computational graph is NP-complete)


• Further improvement:

• Compiler for mathematical expressions that achieves acceleration and 

numeric stability (JIT in pytorch, JAX)


• Mixing programing language with computational graph (conditionals, 
loops, etc with mathematical functions)


• Higher-order derivative (e.g. Hessian)

Allow trivial solution to complex models / 

changing model structure dynamically (data-dependent)



Computation of Gradient: Automatic differentiation


We only need stochastic gradient, so why not randomized automatic differentiation?

Randomized Automatic Differentiation, Deniz Oktay, Nick McGreivy, Joshua Aduol, Alex Beatson, Ryan P. Adams

Unbiased estimator of gradient
True gradient is sum of gradient through each computational paths, so subsampling the path leads to unbiased estimator

Sparse implementation similar to dropout in backward pass 

https://arxiv.org/search/cs?searchtype=author&query=Oktay%2C+D
https://arxiv.org/search/cs?searchtype=author&query=McGreivy%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Aduol%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Beatson%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Adams%2C+R+P


Use gradient efficiently: Stochastic gradient descent

error rate (stochastic) vs 1/t error rate (batch)

‘High optimization error’ is tolerable: 


No need to optimize beyond the statistical limit

Is SGD adaptive to the data uncertainty?



Connection between Stochastic Gradient Descent 
and Bayesian inference

SGD as MCMC Stochastic gradient Langevin dynamics, Welling and Teh, 2011

SGD MCMC by Langevin dynamics

MCMC by Stochastic gradient Langevin dynamics



Connection between Stochastic Gradient Descent 
and Bayesian inference

SGD as VI Stochastic Gradient Descent as Approximate Bayesian Inference, Mandt, 2017

SGD should not be considered simply as approximate gradient descent

SGD is then equivalent to stochastic process

which converge to Gaussian stationary distribution with covariance

Optimal learning rate

S is mini-batch size

Optimal preconditioning matrix



Find the center of the posterior: 

Stochastic weight averaging

SWA can be seen as a particular type of learning rate decay  1-N/N_max



Optimization: scale invariance
Naive gradient descent is not scale-invariant

(Image credit: Alec Radford)

Known solution: use curvature of the surface (second order methods)


The exact way: compute Hessian matrix (second order derivatives) / Newton’s method


The cheap way : approximation using the history of gradients



Optimization: variance reduction and scale invariance

RMSprop

SGD+momentum g_t = 0.9* g_{t-1} + 0.1 * g

Adam

http://sebastianruder.com/optimizing-gradient-descent/



Training neural network without gradient:

zero-th order optimization

Gradient approximation via random-perturbation

Forward-pass only optimization is possible with significant memory advantage

Fine-Tuning Language Models with Just Forward Passes



Learning representations

Raw data that lives in some arbitrary (high-dimensional) space

Representation space with 

smooth and linear structure

embedding



Representation: smoothness

Embedding learned by

variational autoencoder (VAE)

Embedding learned by

generative adversarial networks (GAN)

Bedroom (LSUN)Digits (MNIST)



Representation: smoothness

GAN github.com/kaonashi-tyc/zi2zi

RNN autoencoder https://arxiv.org/abs/1704.03477

https://arxiv.org/abs/1704.03477


Representation: linearity

Pretrained word vectors for >70 languages are publicly available 



Representation: linearity



Representation learning

Trained on 82 million Amazon reviews to 
predict the next character 

“Sentiment neuron”

method: multiplicative LSTM

Reference: https://blog.openai.com/unsupervised-sentiment-neuron/



Part 2. deep learning model 
architectures



Transformer: state-of-the-art architecture for NLP and beyond



Transformer: state-of-the-art architecture for NLP and beyond

https://chat.openai.com/share/95693df4-36cd-4241-9cae-2173e8fb760c@DimitrisPapail

https://twitter.com/DimitrisPapail


Transformer: State-of-the-art architecture for NLP (and beyond)



Transformer: State-of-the-art architecture for NLP (and beyond)
@DimitrisPapail

https://twitter.com/DimitrisPapail


Attention mechanism: input-dependent dynamic weighting

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE, 2015



Attention mechanism: input-dependent dynamic weighting

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html



Examples of attention matrices

Cross attention Self-attention



Transformers -attention is all you need?

Multihead dot product attention

Ashish Vaswani, et al. “Attention is all you need.” NeurIPS 2017.

All-to-all interactions

Small parameter space invariant with length


(computation scales with length ^2)

Encoder-Decoder transformer architecture

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


At least you also need positional encoding!

Ashish Vaswani, et al. “Attention is all you need.” NIPS 2017.https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html#longer-attention-span-transformer-xl

or, learned positional encoding (absolute or relative)

Pre-specified positional encoding / embedding: the original transformer

Important: this assumes input length  << 10000
Increase the number your input is long (len^2)

Note that this ensures a large number of dimensions have near constant positional embedding

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


What does learned positional embedding learn?

What Do Position Embeddings Learn? An Empirical Study of Pre-Trained Language Model Positional Encoding

Predict position from

embedding with

Linear regression

Predict the order of

two positions with


Logistic regression

BERT is 
trained on 
length-128 

sentences in 
the first stage 
and extend to 

512 in the 
second stage

Hypothesis: Bidirectional language models (BERT/RoBERTa)  are less good at learning positions compared to autoregressive language model (GPT2) 

(both with unsupervised training / language modeling task)



Relative position encoding encodes only 
relative distances

A = Softmax( )+QKT Ω(m − n)

Lookup table, 

MLP,

Rotary positional encoding,…

Ω can be implemented in different ways:

Depends on relative distances but not absolute positions

Relative positional encoding is more natural for data with translational invariance

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer



Rotary Positional Embedding (RoPE)

Inner product of input with positional embedding 

should only be sensitive to the relative distance m-n

RoFormer: Enhanced Transformer with Rotary Position Embedding

Rotation matrix



Emergent capabilities from predicting the next token 

at scale



The vision of openAI : scale is all you need

Kaplan et al. 2020, Scaling Laws for Neural Language Models

GPT3 white paper, 2020

GPT4 white paper, 2023



Alignment of language model with custom training 
data and human feedback: ChatGPT



Is there hope for academics who don’t have 
10,000 GPUs?

Alpaca: “$600” ChaGPT: Open source LLM trained on dialogs generated by ChatGPT

Gudibande et al., 2023, The False Promise of Imitating Proprietary LLMs

“imitation models are adept at mimicking ChatGPT’s style but not its factuality”



LoRA: fast finetuning of large models 
with efficient computation

= +

Fine-tuned parameters Pre-trained parameters Random initialization Zero initialization

W W_0 B A

Hu et al., 2021, LoRA: Low-Rank Adaptation of Large Language Models

https://arxiv.org/abs/2106.09685


Will LLM lead to AGI?

LLM  training Base capabilities

Can artificial general intelligence be constructed from these capabilities?

Predicting next-token

ChatGPT

Fine-tuning &

Human feedback

What’s next?



“Programming” LLM to do complex tasks with language

https://github.com/aiwaves-cn/RecurrentGPT

Wang et al., 2023, RecurrentGPT: Interactive Generation of (Arbitrarily) Long Text



“Programming” LLM to do complex tasks with language





Vision transformer for image recognition

Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

https://paperswithcode.com/author/alexey-dosovitskiy


Swin transformer: improving ViT 

Hierarchical structure

Shifted non-overlapping windows

(Swin means shifted windows)

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows



Scalable transformer for long sequences
Sparse factorized attention

Generating Long Sequences with Sparse Transformers

Longformer: The Long-Document Transformer



Scalable transformer for long sequences
Sparse factorized attention

Generating Long Sequences with Sparse Transformers

Longformer: The Long-Document Transformer



Scalable transformer for long sequences
Restrict attention to be within buckets (or within nearby buckets)

Nikita Kitaev, et al. “Reformer: The Efficient Transformer” ICLR 2020.

Reformer (LSH) Routing transformer (k-means) Sinkhorn transformer (Sinkhorn Sorting)

Sorting (learned-ordering) as matrix multiplication

Sinkhorn-knopp algorithm output a sorting 
matrix-like matrix via differentiable iterations 

Blocks are still predefined, algorithm is 
still n^2 wrt number of blocks and only 

determines neighbor of the blocks

Efficient Content-Based Sparse Attention with Routing Transformers
Sparse Sinkhorn Attention

https://arxiv.org/abs/2001.04451
https://arxiv.org/pdf/2002.11296


Scalable transformer for long sequences
Low-rank approximation of attention (FAVOR+)

Rethinking Attention with Performers

Kernel
Feature map decomposition (can need infinite-dimensions though)

Most kernels can be approximated with random feature maps where w is random variable

FAVOR+: Use Nonlinear, random orthogonal feature maps to replace full attention
f W



Scalable transformer for long sequences
Low-rank approximation of attention (FAVOR+)

Rethinking Attention with Performers

No free lunch?:  this approximation can be inefficient in high dimensions (r required >> L)

Despite so, this attention-free formulation can be an alternative to transformer (with learnable instead of random w)

Proof:

Exp can be replaced with ReLU for better performance in practice



Summary of existing “efficient” transformers

Efficient Transformers: A Survey



A Hopfield-network interpretation of 
transformer 

https://ml-jku.github.io/hopfield-layers/

Classical Hopfield network:

Store and retrieval of binary patterns

Discrete modern Hopfield network:

Continuous Hopfield network:

Fixed-point

update

update

update

Query Key Value



A Hopfield-network interpretation of 
transformer 

Motivating multi-step update

(better convergence to fixed point)No internal parameters (similar pattern retrieval)

Stored patterns (key) and projection (value) are parameters

Query and projection are parameters



From transformer to graph network

https://ai.googleblog.com/2020/10/rethinking-attention-with-performers.html



Graph Neural Network

Graph-structured data

https://graphdeeplearning.github.io/project/spatial-convnets/

• Graph is an extremely flexible abstraction for both data and models 



https://arxiv.org/pdf/2003.00982.pdf
Benchmarking Graph Neural Networks

A general form of Graph Network (node-centric)



https://arxiv.org/pdf/2003.00982.pdf

A general form of Graph Network (node-centric)



Expressiveness of Graph networks:

The Weisfeiler-Lehman Isomorphism Test

If a mapping that preserves node adjacency exists,

two graphs are isomorphic



Expressiveness of Graph networks:

The Weisfeiler-Lehman Isomorphism Test

If a mapping that preserves node adjacency exists,

two graphs are isomorphic

https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

Is my GNN as powerful as WL test?
HOW POWERFUL ARE GRAPH NEURAL NETWORKS?

https://arxiv.org/pdf/1810.00826.pdf



Sum is more expressive than mean…than max

1-WL 

GNN



A general form of WL-Graph Network



Toward a general form of Graph Network

Relational inductive biases, deep learning, and graph networks

https://arxiv.org/pdf/1806.01261.pdf



Learning to Simulate Complex Physics with Graph Networks



Convolution + Pooling is a general technique for enforcing

invariance in representations

Group Equivariant Convolutional NetworksCohen and Welling, 2016

Can be extended to introduce translation, rotation, or scaling invariance etc.

Computational challenge: how to compute efficiently?

Mathematical perspective: invariant transformations as symmetry groups

Possible transformations grow multiplicatively if we stack invariances

Stochastic approximation (one random transformation at a time)?

Mallat, 2012 Group Invariant Scattering 



SE(3) equivariant transformer

Fuchs et al., 2020

equivariant vs invariant

You can find the NeurIPS 2020 tutorial on equivariant networks

Used in RoseTTAFold & RoseTTAFold2

invariant equivariant 



Design graph network for spatial 
coordinates


 equivariant-GNNs

ϕ MLP



Day 2



• Variational inference 

• MCMC (e.g. Hamiltonian Monte Carlo uses gradient to speed up sampling)

Similar to deep learning, Bayesian inference method are often gradient based

http://arogozhnikov.github.io/2016/12/19/markov_chain_monte_carlo.html

• Design more expressive tractable probability model

Deep learning for probabilistic models

• Tractable inference for intractable distributions (unnormalized density)

Why

Posterior distribution

Energy-based models

Toward tractable inference for more expressive probabilistic models

• Complex generative tasks / sampling



Deep learning for probabilistic models

• Neural variational inference (variational autoencoder)

• Neural MCMC sampler

• Tractable inference for intractable distributions (unnormalized density)

Potential approaches for NN-assisted inference

Why

Posterior distribution

Energy-based models

Toward tractable inference for more expressive probabilistic models

• Design probability model with tractable & flexible distribution
• Neural autoregressive model  (e.g. transformer language model)

• Normalizing flow

• Neural ODE (continuous normalizing flow)

• Implicit probability model with sampling capability
• Generative adversarial network

• Diffusion probability models*



Z

X
N

θ

φ

Use neural network for describing P(X|Z)  or Q(Z|X)

Neural variational inference

Kingma and Welling, 2014 Auto-Encoding Variational Bayes



Z

X
N

θ

φ

Use neural network for describing P(X|Z)  or Q(Z|X)

Kingma and Welling, 2014 Auto-Encoding Variational Bayes

The variational objective

Neural variational inference



Backpropagation over stochastic units:
Reparametrization trick

How to compute good gradient estimate of 

Gradient of expectation -> expectation of stochastic gradient

Kingma , et al. 2014. Auto-Encoding Variational BayesWilliams, 1992  “REINFORCE” estimator



Backpropagation over stochastic units:
Reparametrization trick for discrete variables

Discrete variables can always be represented by binary vectors

The Gumbel trick for sampling from discrete distributions

Softmax function for approximating the max operation with a differentiable function 



Toward flexible and normalized density models

1.Fully factorized models

Probability function is fully factorized

However, it has to commit to a certain order

Neural autoregressive models (e.g. GPT)



Toward flexible and normalized density models

2. Invertible transformations (Flow models)

Hidden variables are equal in dimensionality.

f

x f(x)

Dinh 2015, NICE: NON-LINEAR 
INDEPENDENT COMPONENTS 
ESTIMATION

NICE Normalizing flow

Rezende 2016. Variational Inference with Normalizing Flows

determinant fixed determinant O(D) time determinant O(D) time

Invertible 

autoregressive flow

Kingma, 2017 Invertible autoregressive flow

Examples:



Toward flexible and normalized density models

2. Invertible transformations (Flow models)

Hidden variables are equal in dimensionality.

f

x f(x)

Invertible Residual Networks (2019)

More Examples (free-form Jacobian):

Invertible ResNet

Forward computation Inverse computation

The Reversible Residual Network: Backpropagation Without Storing Activations

RevNet



Toward flexible and normalized density models

2. Invertible transformations (Flow models)

Hidden variables are equal in dimensionality.

f

x f(x)

Chen 2018, Neural ODE

ODE

determinant fixed

More Examples (Neural ODE):

Grathwohl 2019: FFJORD

Log likelihood

FFJORD:

Continuous change of variable formula 



Sampling-focused* deep generative models: 

diffusion models and GAN

https://www.midjourney.com/
showcase/top/



Score-matching allows generative model fitting without 
computing the partition function

Energy-based models

Score function

Minimize Fisher divergence

Denoising score-matching

http://yang-song.github.io/blog/2021/score/

However,  we don’t know 



Sample from p(X) using its gradient: Langevin dynamics

Initialize x from arbitrary distribution

i.e. once we learned the score function, we can sample from p(X), 




Sample from p(X) using its gradient: Langevin dynamics

Initialize x from arbitrary distribution

i.e. once we learned the score function, we can sample from p(X), 


however…



Learning the score function with data + noise

What noise level? Use multiple!

Generative Modeling by Estimating Gradients of the Data Distribution

Annealed Langevin dynamics



Score-based generative modeling with stochastic 
differential equations (SDEs)

Multiple noise-levels -> infinite noise levels (SDE)

Converge to a 

static distribution

(prior distribution)

Reverse SDE is equivalent to sampling!

Score-Based Generative Modeling through Stochastic Differential Equations.

https://arxiv.org/abs/2011.13456


Score-based generative modeling with stochastic 
differential equations (SDEs)

Score-Based Generative Modeling through Stochastic Differential Equations.

https://arxiv.org/abs/2011.13456


Score-based generative modeling with stochastic 
differential equations (SDEs)

Score-Based Generative Modeling through Stochastic Differential Equations.

Learning the score function with infinite noise levels (SDE)

score-matching

SDE score-matching

https://arxiv.org/abs/2011.13456


Score-based generative modeling with stochastic 
differential equations (SDEs)

Score-Based Generative Modeling through Stochastic Differential Equations.

Convert learned SDE to and ODE with the same distribution

(probability flow ODE): allows computing likelihood!

https://arxiv.org/abs/2011.13456


Score-matching for solving inverse problems

Given P(Y |X) P(X |Y )Solve 

Inverse problems are typically a family of problems, which is easy to compute in one 
direction, but hard to compute in the reversed direction

Image colorization (x: color image, y: b/w image)



Application example: predicting 3D molecular structure

Learning Gradient Fields for Molecular Conformation Generation

1. 3D equivariant representation of molecular structure with distances

2. Learn a conditional score network for distances with denoising score-matching

3. Sample by back-propagating gradient from distance to coordinates



Denoising diffusion probabilistic model

Denoising Diffusion Probabilistic Models

Forward “diffusion” process gradually add noise until reaching unit Gaussian distribution

Multiple steps of diffusion is still described by Gaussian distribution 



Simplified objective typically works better

Variational ELBO objective

Which simplifies to 

 is typically defined to be Gaussian and with variance matching the forward diffusion processpθ

+ log pθ(x0 |x1)

Denoising diffusion probabilistic model



Generative adversarial networks

Probabilistic modeling with neural networks: Learn to sample



Generative adversarial networks

Probabilistic modeling with neural networks: Learn to sample

StyleGAN



Formulating Generative adversarial networks as a probabilistic model

Discriminator network:

Generator network:   use x~Generator instead of x~model 

Wasserstein  GAN objective: Ex∼data f (x) − Ex∼generator f (x)



Sentence-guided generation: VQGAN + CLIP



Sentence-guided generation: VQGAN + CLIP

https://openai.com/blog/clip/

Original application:

Text choices

Correct pairs vs incorrect pairs

CLIP: embed sentence and image to the same space 



Sentence-guided generation: VQGAN + CLIP

https://ml.berkeley.edu/blog/posts/clip-art/



DALLE-2 Replace optimization-based 
generation with “prior”+decoder

Autoregressive “prior”

Diffusion “prior”

Stable diffusion is almost equivalent to DALLE-2 with diffusion in design



DALLE-2 Replace optimization-based 
generation with “prior”+decoder



Reinforcement learning

Image credit: daily.doodl @ instagram

Given state, choose action, get reward



Policy gradient: optimize for actions that leads to higher rewards

REINFORCE estimator for gradient of expectation

Time stepsTrajectories

Improvement to naive policy gradient (Variance reduction) : 

subtract a baseline reward (depending on only the state) from the observed reward ( Advantage = Observed Reward - Baseline)

Policy network



Policy gradient is only correct when the training data is generated 
from the current model weights

https://jonathan-hui.medium.com/rl-policy-gradients-explained-advanced-topic-20c2b81a9a8b

New updated policy

Old policy used to generate data

+ preventing the policy from moving too far away from the old policy



Deep Q learning:

Predict future rewards with deep networks


Q(state, action)  =  maximal future rewards (with the optimal actions)

Bellman equation

Q Learning

Minh et al, 2013 Playing Atari with Deep Reinforcement Learning 

Training: minimize MSE



AlphaGo - surpass human-level game playing in Go

SL policy network: predict expert human moves
 Value network: predict outcome of self-play

RL policy network: optimized by self-play

REINFORCE algorithm (Williams, 1992)

(the nature publication version)

Silver et al., 2016, Mastering the game of Go with deep

neural networks and tree search

convnet / GLM

convnet

convnet



AlphaGo - Monte carlo tree search

Discounting more visited node
u(s, a)∝P(s, a)/ (1+N(s, a))

AlphaGo Zero: 
Train policy network using MCTS policy

Final game play:



Learning without access to environment during 
planning (MCTS)

Dynamics model that 

captures the environment

Learns a representation of 

game state

MuZero: 
Training model without access to the environment during MCTS



AlphaFold2 - X-ray level atomic resolution prediction



AlphaFold v2.0

Jumper et al., 2021

Overall structure

Sequence model structure



AlphaFold v2.0

Jumper et al., 2021

Sequence model structure
1D representation

2D representation

Template protein data also included

(torsion angles)

+



AlphaFold v2.0 : model structure

Jumper et al., 2021

Sequence model structure
1D representation

2D representation

Gated transformer + linear transformed 2D bias



AlphaFold v2.0 : model structure

Jumper et al., 2021

Sequence model structure
1D representation

2D representation

Gated transformer



AlphaFold v2.0 : model structure

Jumper et al., 2021

Sequence model structure
1D representation

2D representation

Linear - ReLU- Linear (with LayerNorm)



AlphaFold v2.0 : model structure

Jumper et al., 2021

Sequence model structure
1D representation

2D representation

Outer product -> linear : more flexible than inner product Dot product (inner product)

Outer product

Linear layer



Jumper et al., 2021

Sequence model structure
1D representation

2D representation

Similar to row-wise gated self attention

AlphaFold v2.0 : model structure



AlphaFold v2.0 : model structure

Jumper et al., 2021

Sequence model structure
1D representation

2D representation

Similar to row-wise gated self attention-based transformer



AlphaFold v2.0 : Recycling mechanism

Jumper et al., 2021

X → Y

X + Y* → Y

Simple approach:

Recycled / recurrent prediction:

Learn to iteratively refine rather than jumping right at the results



AlphaFold v2.0 : Structure module 

Jumper et al., 2021

From intermediate representations to 3D coordinates 



AlphaFold v2.0 : Structure module 

Jumper et al., 2021

From intermediate representations to 3D coordinates 

Side chain angles are 

computed by per-residue network 



AlphaFold v2.0 : Structure module 

Jumper et al., 2021

Invariant Point Attention module

equivariant to the rotation of backbone frames


